programmer's documentation
Functions
cs_rad_transfer_bcs.h File Reference

Go to the source code of this file.

Functions

void cs_rad_transfer_bcs (int nvarcl, int bc_type[], int icodcl[], int izfrad[], int *nozppm, cs_real_t dt[], cs_real_t rcodcl[])
 Compute wall temperature for radiative transfer, and update BCs. More...
 
void cs_rad_transfer_bc_coeffs (int bc_type[], cs_real_t coefap[], cs_real_t coefbp[], cs_real_t cofafp[], cs_real_t cofbfp[], cs_real_t tparoi[], cs_real_t ckmel[], cs_real_t abo[], int iband)
 Boundary conditions for DO and P-1 models. More...
 

Function Documentation

§ cs_rad_transfer_bc_coeffs()

void cs_rad_transfer_bc_coeffs ( int  bc_type[],
cs_real_t  coefap[],
cs_real_t  coefbp[],
cs_real_t  cofafp[],
cs_real_t  cofbfp[],
cs_real_t  tparoi[],
cs_real_t  ckmel[],
cs_real_t  abo[],
int  iband 
)

Boundary conditions for DO and P-1 models.

1. Boundary conditions for the radiative intensity (DO model)

The array coefap stores the intensity for each boundary faces, depending of the natur of the boundary (Dirichlet condition). The intensity of radiation is defined as the rate of emitted energy from unit surface area through unit solid angle.

1/ Gray wall: isotropic radiation field. 4 eps.sig.tparoi (1-eps).qincid coefap = -----------— + -----------— pi pi wall intensity wall emission reflecting flux. (eps=1: black wall; eps=0: reflecting wall) 2/ Free boundary: entering intensity is fixed to zero coefap = 0.d0 (if the user has more information, he can do something better)

2. Boundary conditions for the P-1 model

Parameters
[in]bc_typeboundary face types
[out]izfrdpboundary faces -> zone number
[out]coefap,coefbpboundary conditions for intensity or P-1 model cofafp, cofbfp
[in]tparoiinside current wall temperature (K)
[in]ckmelcoeff d'absorption du melange gaz-particules de charbon
[in]aboWnights of the i-th gray gas at boundaries
[in]ibandnumber of the i-th grey gas

1. Boundary conditions for the radiative intensity (DO model)

The array coefap stores the intensity for each boundary faces, depending of the natur of the boundary (Dirichlet condition). The intensity of radiation is defined as the rate of emitted energy from unit surface area through unit solid angle.

1/ Gray wall: isotropic radiation field. 4 eps.sig.tparoi (1-eps).qincid coefap = -----------— + -----------— pi pi wall intensity wall emission reflecting flux. (eps=1: black wall; eps=0: reflecting wall) 2/ Free boundary: entering intensity is fixed to zero coefap = 0.d0 (if the user has more information, he can do something better)

2. Boundary conditions for the P-1 model

Parameters
[in]bc_typeboundary face types
[out]coefap,coefbpboundary conditions for intensity or P-1 model cofafp, cofbfp
[in]tparoiinside current wall temperature (K)
[in]ckmelcoeff d'absorption du melange gaz-particules de charbon
[in]aboWnights of the i-th gray gas at boundaries
[in]ibandnumber of the i-th grey gas

§ cs_rad_transfer_bcs()

void cs_rad_transfer_bcs ( int  nvarcl,
int  bc_type[],
int  icodcl[],
int  izfrad[],
int *  nozppm,
cs_real_t  dt[],
cs_real_t  rcodcl[] 
)

Compute wall temperature for radiative transfer, and update BCs.

1) Compute wall temperature for radiative transfer

2) Update BCs for the energy computation

Parameters
[in]nvarcltotal number of variable BC's
[in,out]icodclface boundary condition code:
  • 1 Dirichlet
  • 2 Radiative outlet
  • 3 Neumann
  • 4 sliding and $ \vect{u} \cdot \vect{n} = 0 $
  • 5 smooth wall and $ \vect{u} \cdot \vect{n} = 0 $
  • 6 rough wall and $ \vect{u} \cdot \vect{n} = 0 $
  • 9 free inlet/outlet (input mass flux blocked to 0)
  • 13 Dirichlet for the advection operator and Neumann for the diffusion operator
[in]bc_typeface boundary condition type
[in]izfradzone index for boundary faces and reference face index
[in]nozppmmax number of boundary conditions zone
[in]dttime step (per cell)
[in,out]rcodclboundary condition values:
  • rcodcl(1) value of the dirichlet
  • rcodcl(2) value of the exterior exchange coefficient (infinite if no exchange)
  • rcodcl(3) value flux density (negative if gain) in w/m2 or roughness in m if icodcl=6
    1. for the velocity $ (\mu+\mu_T) \gradv \vect{u} \cdot \vect{n} $
    2. for the pressure $ \Delta t \grad P \cdot \vect{n} $
    3. for a scalar $ cp \left( K + \dfrac{K_T}{\sigma_T} \right) \grad T \cdot \vect{n} $

1) Compute wall temperature for radiative transfer

2) Update BCs for the energy computation

Parameters
[in]nvarcltotal number of variable BC's
[in,out]icodclface boundary condition code:
  • 1 Dirichlet
  • 2 Radiative outlet
  • 3 Neumann
  • 4 sliding and $ \vect{u} \cdot \vect{n} = 0 $
  • 5 smooth wall and $ \vect{u} \cdot \vect{n} = 0 $
  • 6 rough wall and $ \vect{u} \cdot \vect{n} = 0 $
  • 9 free inlet/outlet (input mass flux blocked to 0)
  • 13 Dirichlet for the advection operator and Neumann for the diffusion operator
[in]bc_typeface boundary condition type
[in]izfradzone index for boundary faces and reference face index
[in]iihmprGUI use indicator
[in]nozppmmax number of boundary conditions zone
[in]dttime step (per cell)
[in,out]rcodclboundary condition values:
  • rcodcl(1) value of the dirichlet
  • rcodcl(2) value of the exterior exchange coefficient (infinite if no exchange)
  • rcodcl(3) value flux density (negative if gain) in w/m2 or roughness in m if icodcl=6
    1. for the velocity $ (\mu+\mu_T) \gradv \vect{u} \cdot \vect{n} $
    2. for the pressure $ \Delta t \grad P \cdot \vect{n} $
    3. for a scalar $ cp \left( K + \dfrac{K_T}{\sigma_T} \right) \grad T \cdot \vect{n} $