fmpq_mpoly_factor.h – factorisation of multivariate polynomials over the rational numbers¶
Types, macros and constants¶
-
type
fmpq_mpoly_factor_struct
¶ A struct for holding a factored rational polynomial. There is a single constant and a product of bases to corresponding exponents.
-
type
fmpq_mpoly_factor_t
¶ An array of length 1 of
fmpq_mpoly_factor_struct
.
Memory management¶
-
void
fmpq_mpoly_factor_init
(fmpq_mpoly_factor_t f, const fmpq_mpoly_ctx_t ctx)¶ Initialise
f
.
-
void
fmpq_mpoly_factor_clear
(fmpq_mpoly_factor_t f, const fmpq_mpoly_ctx_t ctx)¶ Clear
f
.
Basic manipulation¶
-
void
fmpq_mpoly_factor_swap
(fmpq_mpoly_factor_t f, fmpq_mpoly_factor_t g, const fmpq_mpoly_ctx_t ctx)¶ Efficiently swap \(f\) and
g
.
-
slong
fmpq_mpoly_factor_length
(const fmpq_mpoly_factor_t f, const fmpq_mpoly_ctx_t ctx)¶ Return the length of the product in \(f\).
-
void
fmpq_mpoly_factor_get_constant_fmpq
(fmpq_t c, const fmpq_mpoly_factor_t f, const fmpq_mpoly_ctx_t ctx)¶ Set \(c\) to the constant of \(f\).
-
void
fmpq_mpoly_factor_get_base
(fmpq_mpoly_t B, const fmpq_mpoly_factor_t f, slong i, const fmpq_mpoly_ctx_t ctx)¶ -
void
fmpq_mpoly_factor_swap_base
(fmpq_mpoly_t B, fmpq_mpoly_factor_t f, slong i, const fmpq_mpoly_ctx_t ctx)¶ Set (resp. swap)
B
to (resp. with) the base of the term of index \(i\) in \(A\).
-
slong
fmpq_mpoly_factor_get_exp_si
(fmpq_mpoly_factor_t f, slong i, const fmpq_mpoly_ctx_t ctx)¶ Return the exponent of the term of index \(i\) in \(A\). It is assumed to fit an
slong
.
-
void
fmpq_mpoly_factor_sort
(fmpq_mpoly_factor_t f, const fmpq_mpoly_ctx_t ctx)¶ Sort the product of \(f\) first by exponent and then by base.
-
int
fmpq_mpoly_factor_make_monic
(fmpq_mpoly_factor_t f, const fmpq_mpoly_ctx_t ctx)¶ -
int
fmpq_mpoly_factor_make_integral
(fmpq_mpoly_factor_t f, const fmpq_mpoly_ctx_t ctx)¶ Make the bases in \(f\) monic (resp. integral and primitive with positive leading coefficient). Return \(1\) for success, \(0\) for failure.
Factorisation¶
A return of \(1\) indicates that the function was successful. Otherwise, the return is \(0\) and \(f\) is undefined. None of these functions multiply \(f\) by \(A\): \(f\) is simply set to a factorisation of \(A\), and thus these functions should not depend on the initial value of the output \(f\). The normalization of the factors is not yet specified: use
fmpq_mpoly_factor_make_monic()
orfmpq_mpoly_factor_make_integral()
for common normalizations.
-
int
fmpq_mpoly_factor_squarefree
(fmpq_mpoly_factor_t f, const fmpq_mpoly_t A, const fmpq_mpoly_ctx_t ctx)¶ Set \(f\) to a factorization of \(A\) where the bases are primitive and pairwise relatively prime. If the product of all irreducible factors with a given exponent is desired, it is recommend to call
fmpq_mpoly_factor_sort()
and then multiply the bases with the desired exponent.
-
int
fmpq_mpoly_factor
(fmpq_mpoly_factor_t f, const fmpq_mpoly_t A, const fmpq_mpoly_ctx_t ctx)¶ Set \(f\) to a factorization of \(A\) where the bases are irreducible.