LAPACK  3.5.0
LAPACK: Linear Algebra PACKage
 All Files Functions Typedefs Macros
zhst01.f File Reference

Go to the source code of this file.

Functions/Subroutines

subroutine zhst01 (N, ILO, IHI, A, LDA, H, LDH, Q, LDQ, WORK, LWORK, RWORK, RESULT)
 ZHST01 More...
 

Function/Subroutine Documentation

subroutine zhst01 ( integer  N,
integer  ILO,
integer  IHI,
complex*16, dimension( lda, * )  A,
integer  LDA,
complex*16, dimension( ldh, * )  H,
integer  LDH,
complex*16, dimension( ldq, * )  Q,
integer  LDQ,
complex*16, dimension( lwork )  WORK,
integer  LWORK,
double precision, dimension( * )  RWORK,
double precision, dimension( 2 )  RESULT 
)

ZHST01

Purpose:
 ZHST01 tests the reduction of a general matrix A to upper Hessenberg
 form:  A = Q*H*Q'.  Two test ratios are computed;

 RESULT(1) = norm( A - Q*H*Q' ) / ( norm(A) * N * EPS )
 RESULT(2) = norm( I - Q'*Q ) / ( N * EPS )

 The matrix Q is assumed to be given explicitly as it would be
 following ZGEHRD + ZUNGHR.

 In this version, ILO and IHI are not used, but they could be used
 to save some work if this is desired.
Parameters
[in]N
          N is INTEGER
          The order of the matrix A.  N >= 0.
[in]ILO
          ILO is INTEGER
[in]IHI
          IHI is INTEGER

          A is assumed to be upper triangular in rows and columns
          1:ILO-1 and IHI+1:N, so Q differs from the identity only in
          rows and columns ILO+1:IHI.
[in]A
          A is COMPLEX*16 array, dimension (LDA,N)
          The original n by n matrix A.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).
[in]H
          H is COMPLEX*16 array, dimension (LDH,N)
          The upper Hessenberg matrix H from the reduction A = Q*H*Q'
          as computed by ZGEHRD.  H is assumed to be zero below the
          first subdiagonal.
[in]LDH
          LDH is INTEGER
          The leading dimension of the array H.  LDH >= max(1,N).
[in]Q
          Q is COMPLEX*16 array, dimension (LDQ,N)
          The orthogonal matrix Q from the reduction A = Q*H*Q' as
          computed by ZGEHRD + ZUNGHR.
[in]LDQ
          LDQ is INTEGER
          The leading dimension of the array Q.  LDQ >= max(1,N).
[out]WORK
          WORK is COMPLEX*16 array, dimension (LWORK)
[in]LWORK
          LWORK is INTEGER
          The length of the array WORK.  LWORK >= 2*N*N.
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension (N)
[out]RESULT
          RESULT is DOUBLE PRECISION array, dimension (2)
          RESULT(1) = norm( A - Q*H*Q' ) / ( norm(A) * N * EPS )
          RESULT(2) = norm( I - Q'*Q ) / ( N * EPS )
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date
November 2011

Definition at line 140 of file zhst01.f.

Here is the call graph for this function:

Here is the caller graph for this function: