LAPACK  3.5.0
LAPACK: Linear Algebra PACKage
 All Files Functions Typedefs Macros
zstt21.f File Reference

Go to the source code of this file.

Functions/Subroutines

subroutine zstt21 (N, KBAND, AD, AE, SD, SE, U, LDU, WORK, RWORK, RESULT)
 ZSTT21 More...
 

Function/Subroutine Documentation

subroutine zstt21 ( integer  N,
integer  KBAND,
double precision, dimension( * )  AD,
double precision, dimension( * )  AE,
double precision, dimension( * )  SD,
double precision, dimension( * )  SE,
complex*16, dimension( ldu, * )  U,
integer  LDU,
complex*16, dimension( * )  WORK,
double precision, dimension( * )  RWORK,
double precision, dimension( 2 )  RESULT 
)

ZSTT21

Purpose:
 ZSTT21  checks a decomposition of the form

    A = U S UC>
 where * means conjugate transpose, A is real symmetric tridiagonal,
 U is unitary, and S is real and diagonal (if KBAND=0) or symmetric
 tridiagonal (if KBAND=1).  Two tests are performed:

    RESULT(1) = | A - U S U* | / ( |A| n ulp )

    RESULT(2) = | I - UU* | / ( n ulp )
Parameters
[in]N
          N is INTEGER
          The size of the matrix.  If it is zero, ZSTT21 does nothing.
          It must be at least zero.
[in]KBAND
          KBAND is INTEGER
          The bandwidth of the matrix S.  It may only be zero or one.
          If zero, then S is diagonal, and SE is not referenced.  If
          one, then S is symmetric tri-diagonal.
[in]AD
          AD is DOUBLE PRECISION array, dimension (N)
          The diagonal of the original (unfactored) matrix A.  A is
          assumed to be real symmetric tridiagonal.
[in]AE
          AE is DOUBLE PRECISION array, dimension (N-1)
          The off-diagonal of the original (unfactored) matrix A.  A
          is assumed to be symmetric tridiagonal.  AE(1) is the (1,2)
          and (2,1) element, AE(2) is the (2,3) and (3,2) element, etc.
[in]SD
          SD is DOUBLE PRECISION array, dimension (N)
          The diagonal of the real (symmetric tri-) diagonal matrix S.
[in]SE
          SE is DOUBLE PRECISION array, dimension (N-1)
          The off-diagonal of the (symmetric tri-) diagonal matrix S.
          Not referenced if KBSND=0.  If KBAND=1, then AE(1) is the
          (1,2) and (2,1) element, SE(2) is the (2,3) and (3,2)
          element, etc.
[in]U
          U is COMPLEX*16 array, dimension (LDU, N)
          The unitary matrix in the decomposition.
[in]LDU
          LDU is INTEGER
          The leading dimension of U.  LDU must be at least N.
[out]WORK
          WORK is COMPLEX*16 array, dimension (N**2)
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension (N)
[out]RESULT
          RESULT is DOUBLE PRECISION array, dimension (2)
          The values computed by the two tests described above.  The
          values are currently limited to 1/ulp, to avoid overflow.
          RESULT(1) is always modified.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date
November 2011

Definition at line 132 of file zstt21.f.

Here is the call graph for this function:

Here is the caller graph for this function: