eXpress

“1 5”
http://bio.math.berkeley.edu/eXpress

Generated by Doxygen 1.7.3

Sun Dec 8 2013 11:09:13

http://bio.math.berkeley.edu/eXpress

Contents

1 Class Index
1.1 ClassHierarchy 1
2 Class Index 3
2.1 ClassList e 3
3 Class Documentation 5
3.1 BAMParser Class Reference 5
3.1.1 Detailed Description 6
3.1.2 Constructor & Destructor Documentation 6
3.1.21 BAMParser 6
3.1.3 Member Function Documentation 6
3.1.3.1 header, 6
3.1.3.2 next_fragment, 6
3.2 BAMWriter Class Reference 7
3.2.1 Detailed Description 7
3.2.2 Constructor & Destructor Documentation 8
3221 BAMWriter 8
3.2.3 Member Function Documentation 8
32.3.1 write_fragment 8
3.3 BiasBoss Class Reference 9
3.3.1 Detailed Description 10
3.3.2 Constructor & Destructor Documentation 10
3321 BiasBoss 10
3322 BiasBoss 10
3.3.3 Member Function Documentation 11
333.1 append_output 11
3.3.3.2 copy_expectations 11
3.3.3.3 copy_observations 11
3334 get target bias. 11
3335 order 12
3.3.3.6 update_expectations 12
33377 update_observed 12
3.4 BundleClassReference 12
3.4.1 Detailed Description 13
3.4.2 Constructor & Destructor Documentation 14
3421 Bundle 14
3.4.3 Member Function Documentation 14

3431 countS e 14

ii CONTENTS
3432 getrepo 14

3433 dncr_counts e 14

3434 0nCcr_massSo e e 15

3435 mass e 15

3.43.6 reset_mass e e e e 15

3437 Size e 15

3438 targetso 15

3.5 BundleTable Class Reference 16
3.5.1 Detailed Description 17
3.5.2 Constructor & Destructor Documentation 17
3521 ~BundleTable 17

3.5.3 Member Function Documentation 17
3531 bundles. 17

3532 create_bundle 17

3533 merge ... 18

3534 size. e 18

3.53.5 threadsafe_ mode 18

3.53.6 threadsafe_ mode 18

3.6 CovarTable Class Reference 19
3.6.1 Detailed Description 19
3.6.2 Member Function Documentation 20
3,621 get ..o 20

3.6.2.2 increment 20

3.62.3 SiZze 20

3.7 DirectionDetector Class Reference 21
3.7.1 Detailed Description 21
3.7.2 Member Function Documentation 21
3.7.2.1 add_fragment 21

3.7.2.2 report_if_improper_direction 22

3.8 FragHitClass Reference 22
3.8.1 Detailed Description 24
3.8.2 Constructor & Destructor Documentation 24
3821 FragHit. 24

3822 FragHit., . 24

3.8.3 Member Function Documentation 24
3831 firstread 24

3832 firstread. L 25

3833 frag.name 25

3834 left 25

3835 leftread, 25

3836 leftread 26

3837 length 26

3.83.8 neighbors oL 26

3.8.39 neighbors 26
3.8.3.10 pair_status 27
38311 params 27
38312 paramso 27
3.83.13 right 27
3.83.14 rightread 27
3.8.3.15 right.read 28

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

CONTENTS iii

3.9

3.10

3.11

3.12

3.13

3.14

383.16 second_read 28
3.83.17 second_read 28
38318 target 28
383,19 target 28
38320 target id 29
Fragment Class Reference 29
39.1 Detailed Description 30
3.9.2 Member Function Documentation 30
3921 add_map_end 30
3922 hits. 31
3923 lib 31
3924 mass e e 31
3025 mMass 31
3926 name 32
3927 num_hits 32
3928 operator[] L 32
3929 paired 32
39.2.10 sample_hit oL 32
FrequencyMatrix< T > Class Template Reference 33
3.10.1 Detailed Description 34
3.10.2 Constructor & Destructor Documentation 34
3.10.2.1 FrequencyMatrix 34
3.10.3 Member Function Documentation 35
3.103.1 argmax 35
31032 fix ... 35
3.10.3.3 increment 35
3.10.3.4 increment 35
3.10.3.5 operator() 36
3.103.6 operator() 36
3.10.3.7 set_logged, 36
31038 sum ..o 37
HaplotypeHandler Class Reference 37
3.11.1 Detailed Description 38
3.11.2 Constructor & Destructor Documentation 38
3.11.2.1 HaplotypeHandler 38
HitParams Struct Reference 38
3.12.1 Detailed Description 39
Indel Struct Reference 39
3.13.1 Detailed Description 39
3.13.2 Member Data Documentation 40
31321 pos . ..o 40
LengthDistribution Class Reference 40
3.14.1 Detailed Description 41
3.14.2 Constructor & Destructor Documentation 41
3.14.2.1 LengthDistribution. 41
3.14.2.2 LengthDistribution. 42
3.14.3 Member Function Documentation 42
3143.1 add_val. 42
3.14.3.2 append_output 42
31433 emf. 42

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

CONTENTS

31434 comf 43

3.1435 max_val 43

31436 mean 43

3.143.7 min_val 43

31438 pmf. oL 44

3.14.3.9 to_string 44

3.143.10 tot_mass e e 44

3.15 Librarian Class Reference 44
3.15.1 Detailed Description 45
3.15.2 Constructor & Destructor Documentation 45
3.15.2.1 Librarian 45

3.15.3 Member Function Documentation 46
3.153.1 currllib 46

3.15.3.2 operator[] 46

3.153.3 set.curr e 46

31534 size 46

3.16 Library Struct Reference 47
3.16.1 Detailed Description, 48
3.16.2 Member Data Documentation 48
3.16.2.1 bias_table 48

3.16.2.2 in_file_name 48

3.16.2.3 out_file name 48

3.17 Logger ClassReference 48
3.17.1 Detailed Description, 49

3.18 MapParser Class Reference 49
3.18.1 Detailed Description 50
3.18.2 Constructor & Destructor Documentation 50
3.18.2.1 MapParser 50

3.18.3 Member Function Documentation 50
3.18.3.1 targ_index 50

3.18.3.2 targ_lengths, 50

3.183.3 threaded_parse 51

3.18.3.4 write_active 51

3.19 MarkovModel Class Reference 52
3.19.1 Detailed Description, 53
3.19.2 Constructor & Destructor Documentation 53
3.19.2.1 MarkovModel 53

3.19.3 Member Function Documentation 53
3.19.3.1 fast_learn 53

31932 getiindices 54

3.19.33 getiindices 54

3.19.3.4 marginal_prob oL 54

31935 seqprobo 55

3.19.3.6 transition_prob. L. 55

3.193.7 wupdate 55

3.19.3.8 update 56

3.20 MismatchTable Class Reference 56
3.20.1 Detailed Description 57
3.20.2 Constructor & Destructor Documentation 57
3.20.2.1 MismatchTable 57

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

CONTENTS v

3.21

3.22

3.23

3.24

3.25

3.26

3.27

3.28

3.20.2.2 MismatchTable 58
3.20.3 Member Function Documentation 58
3.20.3.1 activate e e 58
3.20.3.2 append_output 58
32033 fiXx ... 58
32034 getindices 59
3.20.3.5 log_likelihood 59
3203.6 update 59
Parser Class Reference 60
3.21.1 Detailed Description 61
3.21.2 Member Function Documentation 61
3.21.2.1 header 61
3.21.2.2 next_fragment 61
32123 targiindex 62
32124 targ_lengths 62
ParseThreadSafety Struct Reference 62
3.22.1 Detailed Description 63
3.22.2 Constructor & Destructor Documentation 63
3.22.2.1 ParseThreadSafety 63
ReadHit Struct Reference 64
3.23.1 Detailed Description 65
3.23.2 Member Data Documentation 65
32321 bam 65
32322 deletes 65
32323 0nSerts e e e e e e 65
32324 mate_l 65
32325 reversed oo 66
32326 sam e e e e 66
Result Struct Reference 66
3.24.1 Detailed Description 66
RobertsFilter Class Reference 67
3.25.1 Detailed Description 67
3.25.2 Constructor & Destructor Documentation 67
3.252.1 RobertsFilter 67
3.25.3 Member Function Documentation 68
3253.1 test_and_push, 68
RoundParams Struct Reference 68
3.26.1 Detailed Description 69
SAMParser Class Reference 69
3.27.1 Detailed Description 70
3.27.2 Constructor & Destructor Documentation 70
3.27.2.1 SAMParser, 70
3.27.3 Member Function Documentation 71
3273.1 header, 71
3.27.3.2 next_fragment 71
SAMWriter Class Reference 71
3.28.1 Detailed Description 72
3.28.2 Constructor & Destructor Documentation 72
3.282.1 SAMWriter 72
3.28.3 Member Function Documentation 72

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

vi CONTENTS
3.28.3.1 write_fragment 72

3.29 Sequence Class Reference 73
3.29.1 Detailed Description 74
3.29.2 Member Function Documentation 75
32921 calc_p_vals 75
32922 empty ... 75
32923 getexpo 75
32924 getobs. 76
32925 getprob 76
32926 getref 76
32927 length 77
3.29.2.8 operator[] oo 77
32929 prob ... 77
32921086t . ..o 77
329211 update_est 78
329212 update_exp 78
3.29.2.13 update_obs 78

3.30 SequenceFwd Class Reference 78
3.30.1 Detailed Description 80
3.30.2 Constructor & Destructor Documentation 80
3.30.2.1 SequenceFwd 80
3.30.2.2 SequenceFwd 81

3.30.3 Member Function Documentation 81
3.303.1 calc_p_vals 81
33032 emptyo e 81
33033 geteXp . ..o e e 81
33034 getobs. 82
33035 getprob 82
3303.6 getref 82
33037 length L 83
3.30.3.8 operator=.o 83
3.30.3.9 operator[] oL 83
3303.10 prob 84
33030186t . .o 84
3.303.12 update_est 84
3303.13 update_expo e 84
3.30.3.14 update_obs 85

3.31 SequenceRev Class Reference 85
3.31.1 Detailed Description 86
3.31.2 Member Function Documentation 87
331.2.1 cale_p_vals, 87
33122 empty oo 87
33123 getexXpt 87
33124 getobs. 88
33125 getprob L 88
33126 getref 88
33127 length 89
3.31.2.8 operator[] 89
33129 prob 89
33121086t . o oot 90

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

CONTENTS vii
331211 update_est 90
331212 update_exp oo 90
331213 update_obs 91

3.32 SeqWeightTable Class Reference 91
3.32.1 Detailed Description 92
3.32.2 Constructor & Destructor Documentation 92

3.32.2.1 SeqWeightTable 92
3.32.2.2 SeqWeightTable 93
3.32.3 Member Function Documentation 93
3.32.3.1 append_output 93
33232 copy_expected 93
33233 copyobserved 93
33234 get_weight oL 94
3.32.3.5 increment_expected 94
3.32.3.6 increment_observed 94

3.33 Target Class Reference 95
3.33.1 Detailed Description 97
3.33.2 Constructor & Destructor Documentation 98

33321 Target 98
3.33.3 Member Function Documentation 98
33331 add_hit. 98
3.33.3.2 align_likelihood 98
33333 alphao 99
33334 bundle, 99
33335 bundle 99
3.33.3.6 cached_effective_length 99
3.33.3.7 est_effective_length 100
3.33.3.8 haplotype L. 100
33339 id. 100
3.333.10dncr_counts e e e e e e 100
33331 1length 101
3333.1210ock 101
333313 mass e e e e 101
3.333. 14 mass_var . . . o. ..o e e e e e 101
3333.05name e 101
3333.16rho 102
3.33.3.17 sample_likelihood 102
3333188 .« « . oo e e e 102
3333.1986q . . . o oo e 103
333320 solvable 103
333321 solvable 103
3.33.3.22 swap_bias_parameters 103
3.33.3.23 tot_ambig_mass 103
3.33.324 tot_counts 104
333325 unig_counts 104
3.33.3.26 update_target_bias_buffer 104
333327 var_Sum e e e e e e e e e 104

3.34 TargetTable Class Reference 105
3.34.1 Detailed Description 106
3.34.2 Constructor & Destructor Documentation 107

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

viii CONTENTS
3.34.2.1 TargetTable 107

33422 ~TargetTable 107

3.34.3 Member Function Documentation 107
3.34.3.1 asynch_bias_update 107

33432 covar_SiZ€ e e e 108

33433 get.covar ... 108

33434 gettargo 108

33435 merge bundles. 108

3343.6 num_bundles. 109

3.34.3.77 output_results 109

33438 size e 109

33439 total_fpb 109

3343.10 update_covar 110

3.34.3.11 update_total_fpb 110

3.35 ThreadSafeFragQueue Class Reference 110
3.35.1 Detailed Description 111
3.35.2 Constructor & Destructor Documentation 111
3.35.2.1 ThreadSafeFragQueue 111

3.35.3 Member Function Documentation 111
3353.1 ds_emptyo 111

33532 POP - v e e 112

33533 push 112

3.36 Writer Class Reference 112
3.36.1 Detailed Description 113
3.36.2 Member Function Documentation 113
3.36.2.1 write_fragment 113

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

Chapter 1

C

1.1

lass Index

Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

BiasBoss e e 9
Bundle e 12
BundleTable 16
CovarTable e 19
DirectionDetector 21
FragHit e 22
Fragment 29
FrequencyMatrix< T > 33
HaplotypeHandler 37
HitParams 38
Indel e 39
LengthDistribution 40
Librarian e 44
Library o e 47
Logger« e 48
MapParser 49
MarkovModel 52
MismatchTable 56
Parser e e e 60

BAMParser 5

SAMParser e e e e e 69
ParseThreadSafety 62
ReadHit e 64
Result e 66
RobertsFiltero 67
RoundParams 68
Sequencel 73

SequenceFwd L 78

SequenceRev L 85

Class Index

SeqWeightTable 91
Target 95
TargetTable 105
ThreadSafeFragQueue, 110
Writer e e e e 112

BAMWriter 7

SAMWEIItEr o o e e e 71

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

Chapter 2

C

2.1

lass Index

Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

BAMParser (Fills Fragment objects by parsing an input file in BAM format). 5
BAMWriter (Writes Fragment objects back to file in BAM format with per-
mapping probabilistic assignments, or by sampling a single map-

ping based on assignment probabilities) 7
BiasBoss (Keeps track of sequence-specific and positional bias) 9
Bundle (Keeps track of a group of targets that have shared ambiguous (multi-

mapped)reads) e 12
BundleTable (Keeps track of the Bundle objects for a givenrun) 16
CovarTable (The CovarTable is a sparse matrix for storing and updating pair-

wise covariances between targets) 19

DirectionDetector (Keeps track of the observed fragment directions (forward-
reverse or reverse-forward) and whether they are paired or single-

end) e e e e 21
FragHit (The FragHit struct stores the information for a single fragment
alignment) 22
Fragment (Stores information for all alignments of a single fragment) 29
FrequencyMatrix< T > (Frequencymatrix.hexpress) 33
HaplotypeHandler (Keeps track of sets of transcripts from different chromo-
SOMES) v v v v v e e e e e e e e e e e e e e e 37
HitParams (The HitParams struct stores likelihood information for a single
hitofafragment) 38
Indel (The Indel struct stores the information for a single insertion or deletion) 39
LengthDistribution (Lengthdistribution.hexpress) 40
Librarian (Keeps track of the different library objects forarun) 44
Library (Library.hexpress) o i 47
Logger (LOgEercpp express) o v v v v v v v i i i e e 48

MapParser (Meant to be run as a separate thread from the main processing) . 49
MarkovModel (Used to store transition probabilities of a Markov chain based
on a nucleotide Sequence, which itself can be probabilistic) 52

Class Index

MismatchTable (Used to store and update mismatch and indel (error) pa-
rameters using a first-order Markov model based on nucleotide and

positioninaread) 56
Parser (Abstract class for implementing a SAMParser or BAMParser) 60
ParseThreadSafety (The ParseThreadSafety struct stores objects to allow for

parsing to safely occur on a separate thread from processing) 62
ReadHit (The ReadHit struct stores information for a single read alignment) . 64
Result 66
RobertsFilter (Implements a datastructure to test for repeats of a key with

high probability, when repeats are most likely to be nearby) 67
RoundParams (The RoundParams struct stores the target parameters unique

to a given round (iteration)of EM) 68
SAMParser (Fills Fragment objects by parsing an input in SAM format) . . . 69

SAMWriter (Writes Fragment objects back to file in SAM format with per-
mapping probabilistic assignments, or by sampling a single map-

ping based on assignment probabilities) 71
Sequence (Abstract class whose implmentations are used to store and access

encoded nucleotide sequences) 73
SequenceFwd (Implements the Sequence abstract class for storing the for-

ward SEqUENCe) e e e e 78
SequenceRev (Implements the Sequence abstract class for accessing the re-

VEISE SEQUENCE) « « v v v v v e e v e e e e e e e e e e e e e 85
SeqWeightTable (Keeps track of sequence-specific bias parameters) 91
Target (Used to store objects for the targets being mappedto). 95
TargetTable (Used to keep track of the Target objects forarun) 105
ThreadSafeFragQueue (The ThreadSafeFragQueue is a threadsafe queue of

Fragmentpointers) 110
Writer (Abstract class for implementing a SAMWriter or BAMWriter) 112

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

Chapter 3

Class Documentation

3.1 BAMParser Class Reference

The BAMParser class fills Fragment objects by parsing an input file in BAM format.
#include <mapparser.h>

Inheritance diagram for BAMParser:

Parser

BAMParser

Public Member Functions

¢ BAMParser (BamTools::BamReader *reader)

BAMParser constructor sets the reader.

e const std::string header () const

An accessor for the header string.

* bool next_fragment (Fragment &f)

A member function that loads all mappings of the next fragment into the given Frag-
ment object.

 void reset ()

A member function that resets the parser and rewinds to the beginning of the BAM

file.

6 Class Documentation

3.1.1 Detailed Description
The BAMParser class fills Fragment objects by parsing an input file in BAM format.

Author
Adam Roberts

Date
2011 Artistic License 2.0

Definition at line 127 of file mapparser.h.

3.1.2 Constructor & Destructor Documentation
3.1.2.1 BAMParser::BAMParser (BamTools::BamReader * reader)
BAMParser constructor sets the reader.

Parameters

‘ reader ‘ a pointer to the BamReader object that will directly parse the BAM file.

Definition at line 239 of file mapparser.cpp.

3.1.3 Member Function Documentation
3.1.3.1 const std::string BAMParser::header ()const [inline, virtual]
An accessor for the header string.

Returns

The header string.

Implements Parser.
Definition at line 152 of file mapparser.h.
3.1.3.2 bool BAMParser::next_fragment (Fragment & f) [virtuall]

A member function that loads all mappings of the next fragment into the given Frag-
ment object.

Parameters

\ f | the empty Fragment to add mappings to.

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

3.2 BAMWriter Class Reference 7

Returns

True iff more reads remain in the BAM file/stream.

Implements Parser.
Definition at line 261 of file mapparser.cpp.

The documentation for this class was generated from the following files:

* src/mapparser.h
* src/mapparser.cpp

3.2 BAMWriter Class Reference

The BAMWriter class writes Fragment objects back to file in BAM format with per-
mapping probabilistic assignments, or by sampling a single mapping based on assign-
ment probabilities.

#include <mapparser.h>

Inheritance diagram for BAMWriter:

BAMWriter

Public Member Functions

* BAMWriter (BamTools::BamWriter xwriter, bool sample)

BAMWriter constructor stores a pointer to the BamTools::BamWriter object that will
directly write to the BAM file.

¢ ~BAMWriter ()

BAMWriter destructor closes the BamTools::BamWriter object.

 void write_fragment (Fragment &f)

A member function that writes the mappings to the output BAM file.

3.2.1 Detailed Description

The BAMWriter class writes Fragment objects back to file in BAM format with per-
mapping probabilistic assignments, or by sampling a single mapping based on assign-
ment probabilities.

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

8 Class Documentation

Author
Adam Roberts

Date
2011 Artistic License 2.0

Definition at line 226 of file mapparser.h.

3.2.2 Constructor & Destructor Documentation
3.2.2.1 BAMWriter::BAMWriter (BamTools::BamWriter x writer, bool sample)

BAMWriter constructor stores a pointer to the BamTools::BamWriter object that will
directly write to the BAM file.

Parameters

writer | pointer to the BamTools::BamWriter objected assocaited with the output
BAM file.

sample | specifies if a single alignment should be sampled based on posteriors (true)
or all output with their respective posterior

probabilities (false).
Definition at line 550 of file mapparser.cpp.

3.2.3 Member Function Documentation
3.2.3.1 void BAMWriter::write_fragment (Fragment & f) [virtual]

A member function that writes the mappings to the output BAM file.

If _sample is true, a only one alignment is output, otherwise all mappings are output
along with their probabilities in the "XP" field.

Parameters

\ f \ the processed Fragment to output alignments of.

Implements Writer.
Definition at line 559 of file mapparser.cpp.

The documentation for this class was generated from the following files:

* src/mapparser.h

* src/mapparser.cpp

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

3.3 BiasBoss Class Reference 9

3.3 BiasBoss Class Reference

The BiasBoss class keeps track of sequence-specific and positional bias.

#include <biascorrection.h>

Public Member Functions

* BiasBoss (size_t order, double alpha)

BiasBoss Constructor.

* BiasBoss (size_t order, std::string param_file_name)

A second constructor that loads the distributions from a parameter file.

¢ size_t order () const

An accessor for the order of the Markov chains used to model the sequences.

* void copy_observations (const BiasBoss &other)

A member function that copies the observed parameters from another BiasBoss.

* void copy_expectations (const BiasBoss &other)

A member function that copies the expected parameters from another BiasBoss.

* void update_expectations (const Target &targ, double mass=0, const std::vector<
double > &fl_cdf=std::vector< double >())

A member function that updates the expectation parameters assuming uniform abun-
dance of and coverage accross the target’s sequence.

 void normalize_expectations ()

A member function that normalizes the expected counts and fills in the lower-ordered
marginals.

* void update_observed (const FragHit &hit, double mass)

A member function that updates the observed parameters given a fragment mapping
to a target and its logged probabilistic assignment value.

* double get_target_bias (std::vector< float > &start_bias, std::vector< float >
&end_bias, const Target &targ) const

A member function that returns the 5’ and 3’ bias values at each position in a given
target based on the current bias parameters.

* void append_output (std::ofstream &outfile) const

A member function that appends the 5’ and 3’ bias parameters to the given file, for-
matted in tables for easy readability.

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

10 Class Documentation

3.3.1 Detailed Description

The BiasBoss class keeps track of sequence-specific and positional bias. It allows for
the bias associated with a given fragment end to be calculated, and

for the bias parameters to be updated based on additional observations. All stored and
returned values are in log space.

Author
Adam Roberts

Date
2011 Artistic License 2.0

Definition at line 138 of file biascorrection.h.

3.3.2 Constructor & Destructor Documentation
3.3.2.1 BiasBoss::BiasBoss (size_t order, double alpha)
BiasBoss Constructor.

Parameters

quences.

order | a size_t specifying the order of the Markov chains used to model the se-

for each parameter).

alpha | a double specifying the strength of the uniform prior (logged pseudo-counts

Definition at line 185 of file biascorrection.cpp.

3.3.2.2 BiasBoss::BiasBoss (size_t order, std::string param_file_name)

A second constructor that loads the distributions from a parameter file.

Note that the values should not be modified after using this constructor.

Parameters

sequence. Must match file.

order | a size_t specifying the order to use for the Markov chains modelling the

param_file_- | a string specifying the path to the parameter file.
name

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

3.3 BiasBoss Class Reference 11

3.3.3 Member Function Documentation
3.3.3.1 void BiasBoss::append_output (std::ofstream & outfile) const

A member function that appends the 5* and 3’ bias parameters to the given file, format-
ted in tables for easy readability.

Parameters

\ outfile | the file to append to.

3.3.3.2 void BiasBoss::copy_expectations (const BiasBoss & other)
A member function that copies the expected parameters from another BiasBoss.

Parameters

\ other | a BiasBoss to copy the parameters from.

Definition at line 202 of file biascorrection.cpp.

3.3.3.3 void BiasBoss::copy_observations (const BiasBoss & other)
A member function that copies the observed parameters from another BiasBoss.

Parameters

\ other | a BiasBoss to copy the parameters from.

Definition at line 197 of file biascorrection.cpp.

3.3.3.4 double BiasBoss::get_target_bias (std::vector< float > & start_bias, std::vector< float
> & end_bias, const Target & targ) const

A member function that returns the 5° and 3’ bias values at each position in a given
target based on the current bias parameters.

Parameters

start_bias | a vector containing the logged bias for each 5’ start site in the target.

end_bias | a vector containing the logged bias for each 3’ end site in the target.

targ | the target for which to calculate the bias.

Returns

The product of the average 5’ and 3’ bias (logged).

Definition at line 244 of file biascorrection.cpp.

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

12 Class Documentation

3.3.3.5 size_t BiasBoss::order()const [inline]

An accessor for the order of the Markov chains used to model the sequences.

Returns

The order of the Markov chains used to model the sequences.

Definition at line 177 of file biascorrection.h.

3.3.3.6 void BiasBoss::update_expectations (const Target & farg, double mass = 0, const
std::vector< double > & fl.cdf=std: : vector<double> ())

A member function that updates the expectation parameters assuming uniform abun-
dance of and coverage accross the target’s sequence.

Parameters

\ targ \ the target to measure expected counts from

Definition at line 207 of file biascorrection.cpp.

3.3.3.7 void BiasBoss::update_observed (const FragHit & hit, double mass)

A member function that updates the observed parameters given a fragment mapping to
a target and its logged probabilistic assignment value.

Parameters

hit | the fragment hit (alignment).

the observed counts by.

mass | the logged probabality of the mapping, which is the amount to increment

Definition at line 228 of file biascorrection.cpp.

The documentation for this class was generated from the following files:

¢ src/biascorrection.h

* src/biascorrection.cpp

3.4 Bundle Class Reference

The Bundle class keeps track of a group of targets that have shared ambiguous (multi-
mapped) reads.

#include <bundles.h>

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

3.4 Bundle Class Reference 13

Public Member Functions

Bundle (Target *targ)

Bundle Constructor.

* const Bundle * get_rep () const

A private method for returning the root of the merge tree that this bundle is a node in.

¢ void incr_counts (size_t incr_amt=1)

A member function that increases the total bundle observed fragment counts by a
given amount.

¢ void incr_mass (double incr_amt)

A member function that increases the total bundle mass (logged) by a given amount.

¢ void reset_mass ()

A member function that resets the Bundle mass to (log) 0.

¢ size_t size () const

An accessor for the number of Targets in the bundle.

* const std::vector< Target = > x targets () const

An accessor for a pointer to the vector of pointers to Targets in the bundle.

e gsize_t counts () const

An accessor for the the total number of observed fragments mapped to targets in the

bundle.

¢ double mass () const

An accessor for the the total mass of observed fragments mapped to targets in the
bundle (logged), including the initial pseudo-mass.

Friends

¢ class BundleTable

3.4.1 Detailed Description

The Bundle class keeps track of a group of targets that have shared ambiguous (multi-
mapped) reads.

Author
Adam Roberts

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

14 Class Documentation

Date
2011 Artistic License 2.0

Definition at line 76 of file bundles.h.

3.4.2 Constructor & Destructor Documentation
3.4.2.1 Bundle::Bundle (Target * targ)
Bundle Constructor.

Parameters

\ targ | a pointer to the initial Target object in the bundle.

Definition at line 34 of file bundles.cpp.

3.4.3 Member Function Documentation
3.4.3.1 size_t Bundle::counts () const

An accessor for the the total number of observed fragments mapped to targets in the
bundle.

Returns

The total number of fragments mapped to targets in the bundle.

Definition at line 72 of file bundles.cpp.

3.4.3.2 const Bundlex Bundle::get_rep () const

A private method for returning the root of the merge tree that this bundle is a node in.

Returns

A pointer to the bundle at the root of the merge tree for this bundle.

3.4.3.3 void Bundle::incr_counts (size_t incramt=1)

A member function that increases the total bundle observed fragment counts by a given
amount.

Parameters

\ incr_amt | the amount to increase the counts by.

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

3.4 Bundle Class Reference 15

Definition at line 49 of file bundles.cpp.

3.4.3.4 void Bundle::incr_mass (double incr_amt)

A member function that increases the total bundle mass (logged) by a given amount.

Parameters

incr_amz | the amount to increase the mass by (logged).

Definition at line 58 of file bundles.cpp.

3.4.3.5 double Bundle::mass () const

An accessor for the the total mass of observed fragments mapped to targets in the
bundle (logged), including the initial pseudo-mass.

Returns

The total mass of fragments mapped to targets in the bundle.

Definition at line 80 of file bundles.cpp.

3.4.3.6 void Bundle::reset_mass ()

A member function that resets the Bundle mass to (log) 0.
Call is not passed on to _merged_into.

Definition at line 67 of file bundles.cpp.

3.4.3.7 size_t Bundle::size () const

An accessor for the number of Targets in the bundle.

Returns

The number of Targets in the bundle.

Definition at line 41 of file bundles.cpp.

3.4.3.8 const std::vector<Target+ > Bundle::targets ()const [inline]

An accessor for a pointer to the vector of pointers to Targets in the bundle.
The returned value does not outlive this.
Returns

Pointer to the vector pointing to bundle Targets.

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

16

Class Documentation

Definition at line 143 of file bundles.h.

The documentation for this class was generated from the following files:

3.5

src/bundles.h
src/bundles.cpp

BundleTable Class Reference

The BundleTable class keeps track of the Bundle objects for a given run.

#include <bundles.h>

Public Member Functions

BundleTable ()

BundleTable Constructor.

~BundleTable ()

BundleTable deconstructor.

const BundleSet & bundles () const

A member function that returns the set of current Bundle objects.

size_t size () const

An accessor for the current number of Bundles.

Bundle * create_bundle (Target xtarg)

A member function that creates a new Bundle, initially containing only the single
given Target.

Bundle * merge (Bundle *b1, Bundle %b2)

A member function that merges two Bundle objects into one.

void collapse ()

Collapses the merge tree so that all targets are placed in the target list of the root
node and all other nodes are deleted.

bool threadsafe_mode () const

Accessor for whether or not the BundleTable is in threadsafe mode.

void threadsafe_mode (bool mode)

Mutator for threadsafe mode.

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

3.5 BundleTable Class Reference 17

3.5.1 Detailed Description

The BundleTable class keeps track of the Bundle objects for a given run. It has the
ability to create, delete, and merge bundles.

Author
Adam Roberts

Date
2011 Artistic License 2.0

Definition at line 168 of file bundles.h.

3.5.2 Constructor & Destructor Documentation
3.5.2.1 BundleTable::~BundleTable ()

BundleTable deconstructor.
Deletes all Bundle objects.
Definition at line 91 of file bundles.cpp.

3.5.3 Member Function Documentation
3.5.3.1 const BundleSet& BundleTable::bundles ()const [inline]

A member function that returns the set of current Bundle objects.

The returned object does not outlive this.

Returns

A reference to the unordered_set containing all current Bundle objects.

Definition at line 203 of file bundles.h.

3.5.3.2 Bundle * BundleTable::create_bundle (Target « farg)

A member function that creates a new Bundle, initially containing only the single given
Target.

Parameters

‘ targ ‘ a pointer to the only Target initially contained in the Bundle

Returns

A pointer to the new Bundle object

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

18 Class Documentation

Definition at line 104 of file bundles.cpp.

3.5.3.3 Bundle * BundleTable::merge (Bundle + b1, Bundle * b2)

A member function that merges two Bundle objects into one.

The Targets are all moved to the larger bundles and the other is deleted.

Parameters

b1 | a pointer to one of the Bundle objects to merge. \
b2 | a pointer to the other Bundle object to merge. ‘

Returns

A pointer to the merged Bundle object.

Definition at line 110 of file bundles.cpp.

3.5.3.4 size_t BundleTable::size()const [inline]
An accessor for the current number of Bundles.

Returns

The current number of Bundles.

Definition at line 208 of file bundles.h.

3.5.3.5 bool BundleTable::threadsafe_mode ()const [inline]
Accessor for whether or not the BundleTable is in threadsafe mode.

Returns

True if the BundleTable is in threadsafe mode.

Definition at line 233 of file bundles.h.

3.5.3.6 void BundleTable::threadsafe_mode (bool mode) [inline]
Mutator for threadsafe mode.

Parameters

mode | bool specifying if threadsafe mode should be enabled (true) or disabled
(false)

Definition at line 239 of file bundles.h.

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

3.6 CovarTable Class Reference 19

The documentation for this class was generated from the following files:

e src/bundles.h
e src/bundles.cpp

3.6 CovarTable Class Reference

The CovarTable is a sparse matrix for storing and updating pairwise covariances be-
tween targets.

#include <bundles.h>

Public Member Functions

CovarTable ()

Covarlable Constructor.

¢ void increment (TargID targl, TargID targ2, double covar)

A member function that increases the covariance between two targets by the specified
amount (logged).

* double get (TargID targl, TargID targ2)

A member function that returns the covariance between two targets.

e size_t size () const

A member function that returns the number of pairs of targets with non-zero covari-
ance.

3.6.1 Detailed Description

The CovarTable is a sparse matrix for storing and updating pairwise covariances be-
tween targets.

Author
Adam Roberts

Date
2011 Artistic License 2.0

Definition at line 28 of file bundles.h.

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

20

Class Documentation

3.6.2 Member Function Documentation

3.6.2.1 double CovarTable::get (TargID targ1, TarglD targ2)

A member function that returns the covariance between two targets.

The returned value will be the the negative of the true value (logged).

Parameters

targl

one of the targets in the pair.

targ?2

the other target in the pair.

Returns

The negative of the pair’s covariance (logged).

Definition at line 25 of file bundles.cpp.

3.6.2.2 void CovarTable::increment (TargID targ1, TargID targ2, double covar)

A member function that increases the covariance between two targets by the specified
amount (logged).

These values are stored positive even though the true covariance is negative.

Parameters

targl

one of the targets in the pair.

targ?2

the other target in the pair.

covar

a double specifying the amount to increase the pair’s covariance by (logged,
positive).

Definition at line 16 of file bundles.cpp.

3.6.2.3 size_t CovarTable::size()const [inline]

A member function that returns the number of pairs of targets with non-zero covariance.

Returns

The number of target pairs with non-zero covariance.

Definition at line 64 of file bundles.h.

The documentation for this class was generated from the following files:

* src/bundles.h
* src/bundles.cpp

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

3.7 DirectionDetector Class Reference 21

3.7 DirectionDetector Class Reference

The DirectionDetector class keeps track of the observed fragment directions (forward-
reverse or reverse-forward) and whether they are paired or single-end.

#include <directiondetector.h>

Public Member Functions

¢ DirectionDetector ()

The DirectionDetector constructor sets all counts to 0.

* void add_fragment (Fragment xf)

Adds counts for the alignments of the given Fragment.

* bool report_if_improper_direction ()

Throws a warning if a disproportionate number of alignments are in one direction
and the proper flag has not been specified.

3.7.1 Detailed Description

The DirectionDetector class keeps track of the observed fragment directions (forward-
reverse or reverse-forward) and whether they are paired or single-end. It can then
determine if the numbers in each direction are distributed disproportionately and throw
a warning if the proper direction flag has not been specified. Unable to detect when
a directional flag has been chosen incorrectly since the incompatible alignments will
have been discarded.

Author
Adam Roberts

Date
2012 Artistic License 2.0

Definition at line 29 of file directiondetector.h.

3.7.2 Member Function Documentation
3.7.2.1 void DirectionDetector::add_fragment (Fragment x f)
Adds counts for the alignments of the given Fragment.

Parameters

\ f \ a pointer to the Fragment to count the direction of its alignments.

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

22 Class Documentation

Definition at line 20 of file directiondetector.cpp.

3.7.2.2 bool DirectionDetector::report_if improper_direction ()

Throws a warning if a disproportionate number of alignments are in one direction and
the proper flag has not been specified.

Returns

True iff a warning is thrown.

Definition at line 44 of file directiondetector.cpp.

The documentation for this class was generated from the following files:

* src/directiondetector.h
* src/directiondetector.cpp

3.8 FragHit Class Reference

The FragHit struct stores the information for a single fragment alignment.

#include <fragments.h>

Public Member Functions

» FragHit (ReadHit xh)

FragHit constructor for single-end read.

 FragHit (ReadHit 1, ReadHit *r)

Fraghit constructor for paired-end read.

* std::string frag_name () const

Accessor for the name of the fragment.

 HitParams % params ()

Accessor for the hit parameters (likelihood, etc.).

* const HitParams * params () const

Const accessor for the hit parameters (likelihood, etc.).

e Target * target () const

Accessor for a pointer to the Target object the fragment is aligned to.

* void target (Target xtarget)

Mutator for a pointer to the Target object the fragment is aligned to.

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

3.8 FragHit Class Reference 23

* const std::vector< const Target * > * neighbors () const

Accessor for a pointer to the vector of neighbors to the target.

* void neighbors (const std::vector< const Target * > &neighbors)

Mutator for a vector of neighbors to the target.

 TarglD target_id () const
Accessor for the ID of the target the fragment is aligned to.

e size_t left () const

Accessor for the leftmost position aligned to (0-based).

* size_t right () const

Accessor for one position past the rightmost position aligned to (0-based).

* size_t length () const

Accessor for the length of the fragment alignment.

¢ const ReadHit left_read () const

Const accessor for the alignment of the read at the leftmost (5°) end of the fragment
in target coordinates or NULL if it was not sequenced.

¢ const ReadHit * right_read () const

Const accessor for the alignment of the read at the rightmost (3°) end of the fragment
in target coordinates or NULL if it was not sequenced.

¢ const ReadHit x* first_read () const

Const accessor for the alignment of the first (or only) read sequenced in the fragment.

¢ const ReadHit * second_read () const

Const accessor for the alignment of the second read sequenced in the fragment.

¢ ReadHit * left_read ()

Accessor for the alignment of the read at the leftmost (5°) end of the fragment in target
coordinates or NULL if it was not sequenced.

* ReadHit right_read ()

Accessor for the alignment of the read at the rightmost (3’) end of the fragment in
target coordinates or NULL if it was not sequenced.

¢ ReadHit x* first_read ()

Accessor for the alignment of the first (or only) read sequenced in the fragment.

¢ ReadHit * second_read ()

Accessor for the alignment of the second read sequenced in the fragment.

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

24 Class Documentation

* PairStatus pair_status () const

A member function returning whether the mapping is PAIRED, LEFT _ONLY, or RIGHT _-
ONLY, as defined in the PairStatus enum definition.

3.8.1 Detailed Description
The FragHit struct stores the information for a single fragment alignment.

Author
Adam Roberts

Date
2011 Artistic License 2.0

Definition at line 141 of file fragments.h.

3.8.2 Constructor & Destructor Documentation
3.8.2.1 FragHit::FragHit (ReadHitxh) [inline]
FragHit constructor for single-end read.

Parameters

\ h | pointer to the ReadHit struct for the single-end read.

Definition at line 168 of file fragments.h.

3.8.2.2 FragHit::FragHit (ReadHit « /, ReadHitxr) [inline]
Fraghit constructor for paired-end read.

Parameters

~

pointer to the ReadHit struct for the upstream (left) read.

<

pointer to the ReadHit struct for the downstream (right) read.

Definition at line 180 of file fragments.h.

3.8.3 Member Function Documentation
3.8.3.1 const ReadHit« FragHit::first read ()const [inline]

Const accessor for the alignment of the first (or only) read sequenced in the fragment.

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

3.8 FragHit Class Reference 25

Returns

A const pointer to the alignment of the first read.

Definition at line 307 of file fragments.h.

3.8.3.2 ReadHitx FragHit:firstread() [inline]

Accessor for the alignment of the first (or only) read sequenced in the fragment.

Returns

A pointer to the alignment of the first read.

Definition at line 349 of file fragments.h.

3.8.3.3 std::string FragHit::frag_name ()const [inline]

Accessor for the name of the fragment.

Returns

The name of the fragment.

Definition at line 192 of file fragments.h.

3.8.3.4 size_t FragHit::left()const [inline]

Accessor for the leftmost position aligned to (0-based).

Returns

The leftmost position aligned to in the target.

Definition at line 251 of file fragments.h.

3.8.3.5 ReadHitx FragHit::leftread() [inline]

Accessor for the alignment of the read at the leftmost (5°) end of the fragment in target
coordinates or NULL if it was not sequenced.

Returns

A pointer to the 5’ read alignment.

Definition at line 333 of file fragments.h.

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

26 Class Documentation

3.8.3.6 const ReadHitx FragHit::left read ()const [inline]

Const accessor for the alignment of the read at the leftmost (5”) end of the fragment in
target coordinates or NULL if it was not sequenced.

Returns

A const pointer to the 5° read alignment.

Definition at line 285 of file fragments.h.

3.8.3.7 size_t FragHit::length()const [inline]

Accessor for the length of the fragment alignment.

Returns 0 if the fragment is single-end.

Returns

Length of fragment mapping.

Definition at line 274 of file fragments.h.

3.8.3.8 const std::vector<const Target:>x FragHit::neighbors ()const [inline]

Accessor for a pointer to the vector of neighbors to the target.

Experimental.

Returns

A pointer to the vector of neighbors.

Definition at line 228 of file fragments.h.

3.8.3.9 void FragHit::neighbors (const std::vector< const Target « > & neighbors)
[inline]

Mutator for a vector of neighbors to the target.

Experimental.

Parameters

 neighbors | a vector of neighbors to the target.

Definition at line 233 of file fragments.h.

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

3.8 FragHit Class Reference 27

3.8.3.10 PairStatus FragHit::pair_status ()const [inline]

A member function returning whether the mapping is PAIRED, LEFT_ONLY, or RIGHT_-
ONLY, as defined in the PairStatus enum definition.

Returns

The pair status of the mapping.

Definition at line 365 of file fragments.h.

3.8.3.11 HitParams:x FragHit::params() [inline]

Accessor for the hit parameters (likelihood, etc.).

Returns

A pointer to the hit parameters.

Definition at line 203 of file fragments.h.

3.8.3.12 const HitParamsx FragHit::params ()const [inline]

Const accessor for the hit parameters (likelihood, etc.).

Returns

A const pointer to the hit parameters.

Definition at line 208 of file fragments.h.

3.8.3.13 size_t FragHit::right ()const [inline]

Accessor for one position past the rightmost position aligned to (0-based).

Returns

One past the rightmost position aligned to in the target.

Definition at line 262 of file fragments.h.

3.8.3.14 ReadHit« FragHit::rightread() [inline]

Accessor for the alignment of the read at the rightmost (3”) end of the fragment in
target coordinates or NULL if it was not sequenced.

Returns

A pointer to the 3’ read alignment.

Definition at line 341 of file fragments.h.

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

28 Class Documentation

3.8.3.15 const ReadHit« FragHit::right_read()const [inline]

Const accessor for the alignment of the read at the rightmost (3”) end of the fragment
in target coordinates or NULL if it was not sequenced.

Returns

A const pointer to the 3’ read alignment.

Definition at line 296 of file fragments.h.

3.8.3.16 ReadHitx FragHit::second read() [inline]

Accessor for the alignment of the second read sequenced in the fragment.

Returns NULL if single-end.

Returns

A pointer to the alignment of the second read.

Definition at line 357 of file fragments.h.

3.8.3.17 const ReadHitx FragHit::second_read ()const [inline]

Const accessor for the alignment of the second read sequenced in the fragment.

Returns NULL if single-end.

Returns

A const pointer to the alignment of the second read.

Definition at line 319 of file fragments.h.

3.8.3.18 Targetx FragHit::target()const [inline]
Accessor for a pointer to the Target object the fragment is aligned to.

Returns

A pointer to the Target aligned to.

Definition at line 213 of file fragments.h.

3.8.3.19 void FragHit::target (Target « target) [inline]
Mutator for a pointer to the Target object the fragment is aligned to.

Parameters

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

3.9 Fragment Class Reference 29

‘ target ‘ a pointer to the Target aligned to.

Definition at line 220 of file fragments.h.

3.8.3.20 TargID FragHit::target_.id()const [inline]
Accessor for the ID of the target the fragment is aligned to.

Returns

The ID of the target aligned to.

Definition at line 240 of file fragments.h.

The documentation for this class was generated from the following file:

e src/fragments.h

3.9 Fragment Class Reference

The Fragment class stores information for all alignments of a single fragment.

#include <fragments.h>

Public Member Functions

¢ Fragment (Library *lib)

Fragment Constructor.

* ~Fragment ()

Fragment destructor deletes all FragHit and ReadHit objects pointed to by the Frag-
ment.

* const Library * lib ()

Accessor for the global variables associated with the library this fragment is from.

* bool add_map_end (ReadHit xr)

A member function that adds a new ReadHit to the Fragment.

e const std::string & name () const

A member function that returns a reference to the "Query Template Name".

¢ size_t num_hits () const

An accessor for the number of valid alignments of the fragment.

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

30 Class Documentation

 FragHit * operator[] (size_t i) const

An accessor for a pointer to the FragHit at the given index.

e const std::vector< FragHit x > & hits () const

Accessor for the FragHit objects associated with the fragment.

* const FragHit x sample_hit () const

A member function that returns a single FragHit of the fragment sampled at random
based on the probabalistic assignments.

¢ void mass (double m)

Mutator for the mass of the fragment according to the forgetting factor.

¢ double mass () const

An accessor for the mass of the fragment according to the forgetting factor.

e void sort_hits ()

A member function that sorts the FragHits by the TargID of the targets they are aligned
to.

* bool paired () const

An accessor that returns true iff the Fragment has paired alignments.

3.9.1 Detailed Description
The Fragment class stores information for all alignments of a single fragment. By
design, only paired-end mappings of paired-end reads will be accepted. All mappings

of single-end reads will be accepted.

Author
Adam Roberts

Date
2011 Artistic License 2.0

Definition at line 384 of file fragments.h.

3.9.2 Member Function Documentation
3.9.2.1 bool Fragment::add_map_end (ReadHit x r)

A member function that adds a new ReadHit to the Fragment.

If it is the first ReadHit, it sets the Fragment name. If the fragment is not paired, a
FragHit is created and added to _frag_hits. Otherwise, add_open_mate is called.

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

3.9 Fragment Class Reference 31

Parameters

‘ r ‘ a pointer to the ReadHit to be added.

Returns

True iff the read name matches the Fragment name or it is the first read.

Definition at line 28 of file fragments.cpp.

3.9.2.2 const std::vector<FragHitx>& Fragment::hits()const [inline]

Accessor for the FragHit objects associated with the fragment.

Returned value does not outlive this.

Returns

Reference to a vector containing pointers to the FragHits.

Definition at line 464 of file fragments.h.

3.9.2.3 const Libraryx Fragment::lib() [inline]

Accessor for the global variables associated with the library this fragment is from.
Pointer outlives this.
Definition at line 432 of file fragments.h.

3.9.2.4 void Fragment::mass (doublem) [inline]

Mutator for the mass of the fragment according to the forgetting factor.

Parameters

‘ m ‘ a double representing the value to set to the mass to.

Definition at line 476 of file fragments.h.

3.9.25 double Fragment::mass()const [inline]

An accessor for the mass of the fragment according to the forgetting factor.

Returns

The mass of the fragment.

Definition at line 482 of file fragments.h.

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

32 Class Documentation

3.9.2.6 const std::string& Fragment::name ()const [inline]

A member function that returns a reference to the "Query Template Name".

Returns

Reference to the SAM "Query Template Name" (fragment name).

Definition at line 447 of file fragments.h.

3.9.2.7 size_t Fragment::num_hits()const [inline]
An accessor for the number of valid alignments of the fragment.

Returns

Number of valid alignments for fragment.

Definition at line 452 of file fragments.h.

3.9.2.8 FragHit« Fragment::operator[](size.ti Jconst [inline]

An accessor for a pointer to the FragHit at the given index.

Parameters

\ i index of the FragHit requested.

Returns

A pointer to the FragHit at the given index.

Definition at line 458 of file fragments.h.

3.9.29 bool Fragment::paired()const [inline]
An accessor that returns true iff the Fragment has paired alignments.

Returns

True iff the Fragment has paired alignments.

Definition at line 492 of file fragments.h.

3.9.2.10 const FragHit « Fragment::sample_hit () const

A member function that returns a single FragHit of the fragment sampled at random
based on the probabalistic assignments.

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

3.10 FrequencyMatrix< T > Class Template Reference 33

Returned value does not outlive this.

Returns

A randomly sampled FragHit.

Definition at line 75 of file fragments.cpp.
The documentation for this class was generated from the following files:

e src/fragments.h
* src/fragments.cpp

3.10 FrequencyMatrix< T > Class Template Reference

frequencymatrix.h express

#include <frequencymatrix.h>

Public Member Functions

* FrequencyMatrix ()

Dummy FrequencyMatrix Constructor.

» FrequencyMatrix (size_t m, size_t n, T alpha, bool logged=true)

FrequencyMatrix constructor initializes the matrix values to the given pseudo-counts.

» T operator() (size_t i, size_t j, bool normalized=true) const

An accessor for the frequency at a given position in the matrix (logged if table is
logged).

T operator() (size_t k, bool normalized=true) const

An accessor for the frequency at a given position in the flattened matrix (logged if
table is logged).

* void increment (size_t i, size_t j, T incr_amt)

A member function to increase the mass of a given position in the matrix.

¢ void increment (size_t k, T incr_amt)

A member function to increase the mass of a given position in the flattened matrix
(logged if table is logged).

e T sum (size_t i) const

An accessor for the row sum (normalizer), (logged if table is logged).

* size_t argmax (size_t i) const

A member function that finds and returns the argmax (index of mode) of the given
distribution.

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

34 Class Documentation

* void set_logged (bool logged)

A member function that converts the table between log-space and non-log space.

¢ void fix ()

A member function that normalizes and "locks" the matrix values so that no changes
can be made.

¢ bool is_fixed () const

An accessor for the value of _fixed, which specifies whether or not the matrix has been
fixed (irrevocable).

3.10.1 Detailed Description

template<class T>> class FrequencyMatrix<< T >

frequencymatrix.h express Created by Adam Roberts on 4/23/11. Copyright 2011
Adam Roberts. All rights reserved. The FrequencyMatrix class keeps track of the
frequency parameters in order to allow for constant-time probability look-ups and up-
dates. The table is 2D to allow multiple distributions to be stored in one FrequencyMa-
trix. The first dimension (rows) are the different distributions. Values are stored in log

space by default.

Author
Adam Roberts

Date
2011 Artistic License 2.0

Definition at line 27 of file frequencymatrix.h.

3.10.2 Constructor & Destructor Documentation

3.10.2.1 template<class T> FrequencyMatrix< T >::FrequencyMatrix (size_t m,
size_t n, T alpha, bool logged =t rue)

FrequencyMatrix constructor initializes the matrix values to the given pseudo-counts.

Parameters

m | asize_t specifying the number of distributions (rows).

n | asize_t specifying the number of values in each distribution (columns).

alpha | the intial psuedo-counts (un-logged).

logged | bool that specifies if the table is to be stored logged.

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

3.10 FrequencyMatrix< T > Class Template Reference 35

Definition at line 143 of file frequencymatrix.h.

3.10.3 Member Function Documentation
3.10.3.1 template<class T > size_t FrequencyMatrix< T >::argmax (size_t i) const

A member function that finds and returns the argmax (index of mode) of the given
distribution.

Parameters

\ i | the distribution (row).

Returns

The argmax of the distribution.

Definition at line 217 of file frequencymatrix.h.

3.10.3.2 template<class T > void FrequencyMatrix< T >:fix ()

A member function that normalizes and "locks" the matrix values so that no changes
can be made.

This allows for faster future lookups, but is irrevocable.

Definition at line 232 of file frequencymatrix.h.

3.10.3.3 template<class T> void FrequencyMatrix< T >:increment (size_t k, T incr_.amt

)

A member function to increase the mass of a given position in the flattened matrix
(logged if table is logged).

Does nothing if _fixed is true.

Parameters

k | the array position.

incr_amt | the amount to increase the mass by (logged if table is logged).

Definition at line 189 of file frequencymatrix.h.

3.10.3.4 template<class T> void FrequencyMatrix< T >::increment (size_tj, size_tj, T
incr.amt)

A member function to increase the mass of a given position in the matrix.

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

36 Class Documentation

Parameters

~.

the distribution (row).

Jj | the value (column).

incr_amt | the amount to increase the mass by (logged if table is logged).

Definition at line 171 of file frequencymatrix.h.

3.10.3.5 template<class T > T FrequencyMatrix< T >::operator() (size_t k, bool
normalized = t rue) const

An accessor for the frequency at a given position in the flattened matrix (logged if table
is logged).

Parameters

k | the array position.

normalized | a bool specifying whether or not the frequency should be normalized.

Returns

The frequency at the given position in the flattened matrix (logged if table is
logged).

Definition at line 166 of file frequencymatrix.h.

3.10.3.6 template<class T > T FrequencyMatrix< T >::operator() (size_t i, size_t j, bool
normalized = t rue) const

An accessor for the frequency at a given position in the matrix (logged if table is
logged).

Parameters

~.

the distribution (row).

Jj | the value (column).

normalized | a bool specifying whether or not the frequency should be normalized.

Returns

The frequency of the given value in the given distribution (logged if table is logged).

Definition at line 153 of file frequencymatrix.h.

3.10.3.7 template<class T > void FrequencyMatrix< T >::set_logged (bool logged)

A member function that converts the table between log-space and non-log space.

Does nothing if _fixed is true.

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

3.11 HaplotypeHandler Class Reference 37

Parameters

logged | bool specifying if the table should be converted to logged or non-logged
space.

Definition at line 194 of file frequencymatrix.h.

3.10.3.8 template<class T> T FrequencyMatrix< T >::sum (size_t i) const
[inline]

An accessor for the row sum (normalizer), (logged if table is logged).

Parameters

‘ i ‘ the distribution (row).

Returns

The sum (normalizer) for the given distribution (logged if table is (logged).

Definition at line 114 of file frequencymatrix.h.

The documentation for this class was generated from the following file:

e src/frequencymatrix.h

3.11 HaplotypeHandler Class Reference

The HaplotypeHandler class keeps track of sets of transcripts from different chromo-
somes.

#include <targets.h>

Public Member Functions

» HaplotypeHandler (std::vector< Target = > targets, double alpha)

Constructor for the HaplotypeHandler.

* double get_mass (const Target xtarg, bool with_pseudo)

Gets the current relative mass of the given target within the set.

* void update_mass (const Target xtarg, const std::string &frag_name, double align_-
likelihood, double mass)

Buffers the mass and likelihood assigned to the given fragment for the given target.

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

38 Class Documentation

3.11.1 Detailed Description

The HaplotypeHandler class keeps track of sets of transcripts from different chromo-
somes. For these sets, a combined likelihood is computed relative to targets not in the
set, but abundance within the set is calculated based only on fragments with likelihoods
that differ within the set.

Due to how the fragments are processed in the main thread, likelihoods and global as-
signed masses are stored when first computed and then split within the set (committed)
only when it is known that processing of the fragment is complete.
Author

Adam Roberts

Date

2013 Artistic License 2.0

Definition at line 446 of file targets.h.

3.11.2 Constructor & Destructor Documentation

3.11.2.1 HaplotypeHandler::HaplotypeHandler (std::vector< Target + > targets, double
alpha)
Constructor for the HaplotypeHandler.

Provides all targets a shared pointer to this handler, effectively passing ownership to
them.

Definition at line 232 of file targets.cpp.

The documentation for this class was generated from the following files:

* src/targets.h
* src/targets.cpp

3.12 HitParams Struct Reference

The HitParams struct stores likelihood information for a single hit of a fragment.

#include <fragments.h>

Public Attributes

¢ double align_likelihood
¢ double full_likelihood
* double posterior

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

3.13 Indel Struct Reference

39

3.12.1 Detailed Description

The HitParams struct stores likelihood information for a single hit of a fragment.

Definition at line 129 of file fragments.h.

The documentation for this struct was generated from the following file:

e src/fragments.h

3.13 Indel Struct Reference

The Indel struct stores the information for a single insertion or deletion.

#include <fragments.h>

Public Member Functions

¢ Indel (size_t p, size_t 1)

Indel constructor.

Public Attributes

* size_t pos

A public size_t for the position of the Indel in the read.

e size_tlen

A public size_t for the length of the Indel in the read.

3.13.1 Detailed Description
The Indel struct stores the information for a single insertion or deletion.

Author
Adam Roberts

Date
2012 Artistic License 2.0

Definition at line 42 of file fragments.h.

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

40 Class Documentation

3.13.2 Member Data Documentation
3.13.2.1 size_t Indel::pos

A public size_t for the position of the Indel in the read.
0-based.
Definition at line 46 of file fragments.h.

The documentation for this struct was generated from the following file:

e src/fragments.h

3.14 LengthDistribution Class Reference

lengthdistribution.h express

#include <lengthdistribution.h>

Public Member Functions

* LengthDistribution (double alpha, size_t max_val, size_t prior_mu, size_t prior_-
sigma, size_t kernel_n, double kernel_p, size_t bin_size=1)

LengthDistribution Constructor.

¢ LengthDistribution (std::string param_file_name, std::string length_type)

A second constructor that loads the distribution from a parameter file.

e size_t max_val () const

An accessor for the maximum allowed length.

e size_t min_val () const

An accessor for the minimum observed length (1 initially).

¢ double mean () const

An accessor for the mean length in the distribution.

¢ void add_val (size_t len, double mass)

A member function that updates the distribution based on a new length observation.

* double pmf (size_t len) const

An accessor for the (logged) probability of a given length.

¢ double cmf (size_t len) const

A member function that returns a (logged) cumulative mass for a given length.

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

3.14 LengthDistribution Class Reference 41

e std::vector< double > cmf () const

A member function that returns a vector containing the (logged) cumulative mass
function xfor the binsx.

¢ double tot_mass () const

An accessor for the (logged) observation mass (including pseudo-counts).

e std::string to_string () const

A member function that returns a string containing the current distribution.

* void append_output (std::ofstream &outfile, std::string length_type) const

A member function that appends the LengthDistribution parameters to the end of the
given file.

3.14.1 Detailed Description

lengthdistribution.h express Created by Adam Roberts on 1/30/13. Copyright 2013
Adam Roberts. All rights reserved. The LengthDistribution class keeps track of the
observed length distribution. It is initialized with a Gaussian prior with parameters
specified by the arguments to the constructor. An argument-specified binomial kernel
is then added for each observation. All mass values and probabilities are stored and
returned in log space (except in to_string).

Definition at line 22 of file lengthdistribution.h.

3.14.2 Constructor & Destructor Documentation

3.14.2.1 LengthDistribution::LengthDistribution (double alpha, size_t max_val, size_t prior_mu,
size_t prior_sigma, size_t kernel_n, double kernel_p, size_t bin_size=1)

LengthDistribution Constructor.

Parameters

alpha | double that sets the average pseudo-counts (logged).

max_val | an integer that sets the maximum allowable length.

distribution is used instead.

prior_mu | a size_t for the mean of the prior gaussian distribution. If 0, a uniform

prior_sigma | a size_t for the standard deviation of the prior gaussian distribution.

Must be odd.

kernel_n | a size_t specifying the number of trials in the kernel binomial distribution.

tion.

kernel_p | a double specifying the success probability for the kernel binomial distribu-

parameters in the distribution.

bin_size | a size_t specifying the size of bins to use internally to reduce the number of

Definition at line 20 of file lengthdistribution.cpp.

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

42

Class Documentation

3.14.2.2 LengthDistribution::LengthDistribution (std::string param_file_name, std::string
length_type)

A second constructor that loads the distribution from a parameter file.

Note that the values should not be modified (add_val should not be called) after using
this constructor. The bin size is set to 1.

Parameters

param_file_-
name

a string specifying the path to the parameter file.

length_type

a string specifying the type of length distribution to be matched in the pa-
rameter file.

3.14.3 Member Function Documentation

3.14.3.1

void LengthDistribution::add_val (size_t len, double mass)

A member function that updates the distribution based on a new length observation.

Parameters

len

an integer for the observed length.

mass

a double for the mass (logged) to add.

Definition at line 114 of file lengthdistribution.cpp.

3.14.3.2 void LengthDistribution::append_output (std::ofstream & outfile, std::string
length_type) const

A member function that appends the LengthDistribution parameters to the end of the
given file.

Parameters

outfile

the file to append to.

length_type

a string specifying the type of length the distribution is of (ie. "Fragment"
or "Target") to be included in the header.

3.14.3.3 double LengthDistribution::cmf (size_t len) const

A member function that returns a (logged) cumulative mass for a given length.

Parameters

len \ an integer for the length to return the cmf value of.

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

3.14 LengthDistribution Class Reference 43

Returns

(Logged) cmf value of length.

Definition at line 148 of file lengthdistribution.cpp.

3.14.3.4 vector< double > LengthDistribution::cmf () const

A member function that returns a vector containing the (logged) cumulative mass func-
tion xfor the binsx.

Returns

(Logged) cmf of bins.

Definition at line 158 of file lengthdistribution.cpp.

3.14.3.5 size_t LengthDistribution::max_val () const

An accessor for the maximum allowed length.

Returns

Max allowed length.

Definition at line 103 of file lengthdistribution.cpp.

3.14.3.6 double LengthDistribution::mean () const

An accessor for the mean length in the distribution.

Returns

Mean observed length.

Definition at line 174 of file lengthdistribution.cpp.

3.14.3.7 size_t LengthDistribution::min_val () const

An accessor for the minimum observed length (1 initially).

Returns

Minimum observed length.

Definition at line 107 of file lengthdistribution.cpp.

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

44 Class Documentation

3.14.3.8 double LengthDistribution::pmf (size_t len) const
An accessor for the (logged) probability of a given length.

Parameters

‘ len ‘ an integer for the length to return the probability of.

Returns

(logged) probability of observing the given length.

Definition at line 140 of file lengthdistribution.cpp.

3.14.3.9 string LengthDistribution::to_string () const

A member function that returns a string containing the current distribution.

Returns

Space-separated string of probabilities ordered from length O to max_val (non-
logged).

Definition at line 178 of file lengthdistribution.cpp.

3.14.3.10 double LengthDistribution::tot_mass () const

An accessor for the (logged) observation mass (including pseudo-counts).

Returns

Total observation mass.

Definition at line 170 of file lengthdistribution.cpp.

The documentation for this class was generated from the following files:

¢ src/lengthdistribution.h
* src/lengthdistribution.cpp

3.15 Librarian Class Reference

The Librarian class keeps track of the different library objects for a run.

#include <library.h>

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

3.15 Librarian Class Reference 45

Public Member Functions

e Librarian (size_t num_libs)

Librarian Constructor.

e Library & operator[] (size_t i)

An accessor for the Library struct at a given index.

* const Library & curr_lib () const

An accessor for the Library struct associated with the library currently being pro-
cessed.

e void set_curr (size_t i)

A mutator of the index of the library currently being processed.

¢ size_t size () const

An accessor for the number of Library structs.

3.15.1 Detailed Description
The Librarian class keeps track of the different library objects for a run.

Author
Adam Roberts

Date
2012 Artistic License 2.0

Definition at line 75 of file library.h.

3.15.2 Constructor & Destructor Documentation
3.15.2.1 Librarian::Librarian (size_t num_libs) [inline]
Librarian Constructor.

Parameters

‘ num_libs ‘ a size_t for the number of libraries to be processed in the run.

Definition at line 92 of file library.h.

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

46 Class Documentation

3.15.3 Member Function Documentation
3.15.3.1 const Library& Librarian::curr_lib()const [inline]

An accessor for the Library struct associated with the library currently being processed.
Returned value does not outlive this.
Returns

The Library struct indexed by _curr.

Definition at line 108 of file library.h.

3.15.3.2 Library& Librarian::operator[] (size.ti) [inline]

An accessor for the Library struct at a given index.

Returned value does not outlive this.

Parameters

‘ i ‘ a size_t indexing the requested Library struct.

Returns

The Library struct at the given index.

Definition at line 99 of file library.h.

3.15.3.3 void Librarian::set_curr (sizeti) [inline]

A mutator of the index of the library currently being processed.

Parameters

‘ i ‘ a size_t to set the index of the current Library struct to.

Definition at line 113 of file library.h.

3.15.3.4 size_t Librarian::size()const [inline]

An accessor for the number of Library structs.

This should be equal to the number of libraries to be processed in the run.

Returns

The number of Library structs.

Definition at line 122 of file library.h.

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

3.16 Library Struct Reference 47

The documentation for this class was generated from the following file:

e src/library.h

3.16 Library Struct Reference

library.h express

#include <library.h>

Public Member Functions

e Library ()

Library constructor sets initial values for parameters.

Public Attributes

e std::string in_file_name
Path to the input file.

e std::string out_file_name
Path to the out file.

* boost::shared_ptr< MapParser > map_parser
A pointer to the MapParser for parsing the input alignment file for this library.

* boost::shared_ptr< LengthDistribution > fld
A pointer to the fragment length distribution object for this library.

* boost::shared_ptr< MismatchTable > mismatch_table

A pointer to the MismatchTable containing the learned error distribution for this li-
brary.

* boost::shared_ptr< BiasBoss > bias_table

A pointer to the BiasBoss containing the learned bias distribution for this library.

* boost::shared_ptr< TargetTable > targ_table

A pointer to the TargetTuble containing the target parameters (abundance, effective
length) for this library.

* size_tn

The number of the next read to be processed (starting at 1).

¢ double mass_n

The mass of the next read to be processed (logged).

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

48 Class Documentation

3.16.1 Detailed Description
library.h express Created by Adam Roberts on 5/12/12. Copyright (c) 2012 Adam
Roberts. All rights reserved. The Library struct holds pointers to the global parameter

tables for a set of reads from the same library preparation.

Author
Adam Roberts

Date
2012 Artistic License 2.0

Definition at line 22 of file library.h.

3.16.2 Member Data Documentation
3.16.2.1 boost::shared_ptr<BiasBoss> Library::bias_table

A pointer to the BiasBoss containing the learned bias distribution for this library.
(optional)
Definition at line 49 of file library.h.

3.16.2.2 std::string Library::in_file_name

Path to the input file.
Empty if streamed.
Definition at line 26 of file library.h.

3.16.2.3 std::string Library::out_file_name

Path to the out file.
Empty if alignments are not to be output.
Definition at line 30 of file library.h.

The documentation for this struct was generated from the following file:

* src/library.h

3.17 Logger Class Reference

logger.cpp express

#include <logger.h>

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

3.18 MapParser Class Reference 49

Public Member Functions

¢ void info_out (std::ostream *xout)

¢ void warn_out (std::ostream *out)

¢ void severe_out (std::ostream xout)

* void info (const char *msg,...) const

* void warn (const char *msg,...) const
* void severe (const char *msg,...) const

3.17.1 Detailed Description

logger.cpp express Created by Adam Roberts on 6/22/13. Copyright 2013 Adam Roberts.
All rights reserved.
Definition at line 20 of file logger.h.

The documentation for this class was generated from the following file:

* src/logger.h

3.18 MapParser Class Reference

The MapParser class is meant to be run as a separate thread from the main processing.

#include <mapparser.h>

Public Member Functions

¢ MapParser (Library *lib, bool write_active)

MapParser constructor determines what format the input is in and initializes the cor-
rect parser and writer (if appropriate).

* void threaded_parse (ParseThreadSafety xthread_safety, size_t stop_at=0, size_t
num_neighbors=0)

A member function that drives the parse thread.

* const TransIndex & targ_index ()

An accessor for the target name to index map.

» const TransIndex & targ_lengths ()

An accessor for the target-to-length map.

¢ void write_active (bool b)

A mutator for the write-active status of the parser.

¢ void reset_reader ()

A member function that resets the input parser.

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

50 Class Documentation

3.18.1 Detailed Description

The MapParser class is meant to be run as a separate thread from the main processing.
Once started, this thread will read input from a file or stream in SAM/BAM format,
parse, and collect read alignments into fragment alignments, and fragment alignments
into fragments, which are placed on a buffer for the processing thread. Once the pro-
cessing thread copies the fragment address from the buffer, the parser is unlocked to
load the next fragment. The process stops when EOF is reached.

Author
Adam Roberts

Date
2011 Artistic License 2.0

Definition at line 308 of file mapparser.h.

3.18.2 Constructor & Destructor Documentation
3.18.2.1 MapParser::MapParser (Library x lib, bool write_active)

MapParser constructor determines what format the input is in and initializes the correct
parser and writer (if appropriate).

Parameters

lib | pointer to variables associated with the input, including file path.

write_active | bool to initialize _write_active.

Definition at line 96 of file mapparser.cpp.

3.18.3 Member Function Documentation
3.18.3.1 const TransIndex& MapParser::targ_index() [inline]

An accessor for the target name to index map.
Returns a reference that does not outlive this.
Returns

Reference to the target-to-index map.

Definition at line 359 of file mapparser.h.

3.18.3.2 const TransIndex& MapParser::targ_lengths () [inline]

An accessor for the target-to-length map.

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

3.18 MapParser Class Reference 51

Returns a reference that does not outlive this.

Returns

Reference to the target-to-length map.

Definition at line 365 of file mapparser.h.

3.18.3.3 void MapParser::threaded_parse (ParseThreadSafety « thread_safety, size_t
stop_at = 0, size_t num_neighbors = 0)

A member function that drives the parse thread.

When all valid mappings of a fragment have been parsed, its mapped targets are found
and the information is passed in a Fragment object to the processing thread through
a queue in the ParseThreadSafety struct. After processing, the Fragment returns on a
different in queue, and is written to the output map file (depending on settings) and
deleted.

Parameters

safety

thread_- | a pointer to the struct containing shared queues with the processing thread.

0, default).

stop_at | a size_t indicating how many reads to process before stopping (disabled if

num_- | experimental.
neighbors

Definition at line 149 of file mapparser.cpp.

3.18.3.4 void MapParser::write_active (boolb) [inline]

A mutator for the write-active status of the parser.

This specifies whether or not the alignments (sampled or with probs) should be ouptut.

Parameters

\ b | updated write-active status

Definition at line 371 of file mapparser.h.

The documentation for this class was generated from the following files:

* src/mapparser.h

* src/mapparser.cpp

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

52 Class Documentation

3.19 MarkovModel Class Reference

The MarkovModel class is used to store transition probabilities of a Markov chain
based on a nucleotide Sequence, which itself can be probabilistic.

#include <markovmodel.h>

Public Member Functions

* MarkovModel (size_t order, size_t window_size, size_t num_pos, double al-
pha)
MarkovModel Constructor.

* double transition_prob (size_t p, size_t cond, size_t curr) const

Accessor for the probability of transitioning from cond to curr at node p.

* double seq_prob (const Sequence &seq, int left) const

Computes the probability of the sequence beginning at left of size _window_size using
the parameters of the Markov model.

* void update (const Sequence &seq, int left, double mass)

Increments the parameters associated with the sequence beginning at left of size _-
window_size by the (logged) mass.

* void update (size_t p, size_t i, size_t j, double mass)

Increments the specified transition by the given mass.

* size_t get_indices (const Sequence &seq, int left, std::vector< char > &in-
dices)

A member function that computes and returns the parameter table indices used to
compute and update the likelihood for the given sequence at the window started at
the given position.

* std::vector< char > get_indices (const Sequence &seq)

A member function that computes and returns the parameter table indices used to
fast_learn (see below) the likelihood for the given sequence.

¢ double marginal_prob (size_t w, size_t nuc) const

Computes the marginal probability of transitioning to the given nucleotide at position
w in the model.

* void fast_learn (const Sequence &seq, double mass, const std::vector< double
> &fl_cmf)

Slides a window along the given sequence, incrementing the highest order transition
paramaters by the given mass multiplied by the probability of observing a fragment
at that distance from the end.

* void calc_marginals ()

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

3.19 MarkovModel Class Reference 53

After learning the highest order transitions with fast_learn, this method fills in the
lower-order transitions.

3.19.1 Detailed Description

The MarkovModel class is used to store transition probabilities of a Markov chain
based on a nucleotide Sequence, which itself can be probabilistic. The The probabilities
can be updated based on a sequence window and can be initialized by sliding a window
over a sequence. Nucleotides are represented by size_t values according to the NUCS

array in main.h.

Author
Adam Roberts

Date
2012 Artistic License 2.0

Definition at line 28 of file markovmodel.h.

3.19.2 Constructor & Destructor Documentation

3.19.2.1 MarkovModel::MarkovModel (size_t order, size_t window_size, size_t num_pos, double
alpha)

MarkovModel Constructor.

Parameters

order | the order of the model.

window_size | the size of the sequence window to calculate probabilities for.

num_pos | the number of nodes in the model.

alpha | the initial pseudo-counts (non-logged).

Definition at line 16 of file markovmodel.cpp.

3.19.3 Member Function Documentation

3.19.3.1 void MarkovModel::fast_learn (const Sequence & seq, double mass, const
std::vector< double > & fl_cmf)

Slides a window along the given sequence, incrementing the highest order transition
paramaters by the given mass multiplied by the probability of observing a fragment at
that distance from the end.

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

54 Class Documentation

Parameters

seq | the sequence to slide the window along.

mass | the amount to increment the parameters by.

fl_cmf | the fragment length CMF to determine the probability of observing frag-
ment starts at different positions in the sequence.

Definition at line 113 of file markovmodel.cpp.

3.19.3.2 size_t MarkovModel::get_indices (const Sequence & seq, int left, std::vector< char
> & indices)

A member function that computes and returns the parameter table indices used to com-
pute and update the likelihood for the given sequence at the window started at the given
position.

Negative values indicate that the position is not used in the likelihood computation.

Parameters

seq | the sequence to find the indices for.

left | the position where the window should begin in the sequence.

indices | a vector to fill with indices into the parameter tables that would be used in
a likelihood calculation.

Returns

The starting position in the sequence to align with the first index.

3.19.3.3 vector< char > MarkovModel::get_indices (const Sequence & seq)

A member function that computes and returns the parameter table indices used to fast_-
learn (see below) the likelihood for the given sequence.

Negative values indicate that the position is not used in the fast_learn computation.

Parameters

‘ seq | the sequence to find the indices for.

Returns

A vector of indices into the parameter tables that would be used in a fast_learn.

Definition at line 92 of file markovmodel.cpp.

3.19.3.4 double MarkovModel::marginal_prob (size_t w, size_t nuc) const

Computes the marginal probability of transitioning to the given nucleotide at position
w in the model.

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

3.19 MarkovModel Class Reference 55

Parameters

w | the position (node) in the model.

nuc | the nucleotide to calculate the marginal transition probability to.

Returns

The marginal probability of transitioning to nuc at position w.

Definition at line 204 of file markovmodel.cpp.

3.19.3.5 double MarkovModel::seq_prob (const Sequence & seq, int left) const

Computes the probability of the sequence beginning at left of size _window_size using
the parameters of the Markov model.

Parameters

seq | the sequence from which to extract the window.

left | the leftmost point in the sequence window.

Returns

The probability of the sequence based on the model parameters.

Definition at line 163 of file markovmodel.cpp.

3.19.3.6 double MarkovModel::transition_prob (size_t p, size_t cond, size_t curr) const

Accessor for the probability of transitioning from cond to curr at node p.

Parameters

p | the node to get the transition probability from.

cond | the index of the previous state.

curr | the index of the state being transitioned to.

Returns

The probability of transitioning from cond to curr at node p.

Definition at line 158 of file markovmodel.cpp.

3.19.3.7 void MarkovModel::update (const Sequence & seq, int left, double mass)

Increments the parameters associated with the sequence beginning at left of size _-
window_size by the (logged) mass.

Parameters

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

56 Class Documentation

seq | the sequence from which to extract the window.

left | the leftmost point in the sequence window.

mass | the amount to increment the parameters by (logged).

Definition at line 57 of file markovmodel.cpp.

3.19.3.8 void MarkovModel::update (size_t p, size_t i, size_t j, double mass)
Increments the specified transition by the given mass.

Parameters

p | the position in the chain to increment.

i | the index of the previous state.

Jj | the index of the transitioned state.

mass | the amount to increment by (logged).

Definition at line 88 of file markovmodel.cpp.

The documentation for this class was generated from the following files:

¢ src/markovmodel.h
e src/markovmodel.cpp

3.20 MismatchTable Class Reference

The MismatchTable class is used to store and update mismatch and indel (error) pa-
rameters using a first-order Markov model based on nucleotide and position in a read.

#include <mismatchmodel.h>

Public Member Functions

* MismatchTable (double alpha)

MismatchTable constructor initializes the model parameters using the specified (non-
logged) pseudo-counts.

* MismatchTable (std::string param_file_name)

A second constructor that loads the distribution from a parameter file.

¢ void activate (bool active=true)

Mutator to set the _active member variable to allow for log_likelihood calculations.

* void get_indices (const FragHit &f, std::vector< char > &left_indices, std::vector<
char > &left_seq, std::vector< char > &left_ref, std::vector< char > &right_-
indices, std::vector< char > &right_seq, std::vector< char > &right_ref) const

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

3.20 MismatchTable Class Reference 57

A member function that computes and returns the parameter table indices used to
compute and update the likelihood based on the given FragHit.

* double log_likelihood (const FragHit &f) const

A member function that returns the log likelihood of mismatches and indels in the
mapping given the current error model parematers.

* void update (const FragHit &, double p, double mass)

A member function that updates the error model parameters based on a mapping and
its (logged) mass.

e void fix ()

Freezes the parameters to allow for faster computation after burn out.

* void append_output (std::ofstream &outfile) const

A member function that appends the final model parameters in tab-separated format
to the given file.

3.20.1 Detailed Description

The MismatchTable class is used to store and update mismatch and indel (error) param-
eters using a first-order Markov model based on nucleotide and position in a read. Also
computes likelihoods of mismatches and indels in given fragment mappings. When the
target sequences are proabilistic, this class is responsible for updating those parameters.
All values are stored and returned in log space.

Author

Adam Roberts

Date

2011 Artistic License 2.0

Definition at line 29 of file mismatchmodel.h.

3.20.2 Constructor & Destructor Documentation

3.20.2.1 MismatchTable::MismatchTable (double alpha)

MismatchTable constructor initializes the model parameters using the specified (non-
logged) pseudo-counts.

Parameters

alpha

a double containing the non-logged pseudo-counts for parameter initializa-
tion.

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

58 Class Documentation

Definition at line 19 of file mismatchmodel.cpp.

3.20.2.2 MismatchTable::MismatchTable (std::string param_file_name)

A second constructor that loads the distribution from a parameter file.

Note that the values should not be modified after using this constructor.

Parameters

param_file_- | a string specifying the path to the parameter file.
name

3.20.3 Member Function Documentation
3.20.3.1 void MismatchTable::activate (bool active=true) [inline]

Mutator to set the _active member variable to allow for log_likelihood calculations.

Used to skip calculations before burn-in completes.

Parameters

‘ active ‘ a boolean specifying whether to activate (true) or deactivate (false)

Definition at line 79 of file mismatchmodel.h.

3.20.3.2 void MismatchTable::append_output (std::ofstream & outfile) const

A member function that appends the final model parameters in tab-separated format to
the given file.

The output has 1 row for each read position and the parameters are in columns indexed
as (ref, prev, obs) in base 4 with A,C,G,T encoded as 0,1,2,3.

Parameters

‘ file | stream to append to.

Definition at line 119 of file biascorrection.cpp.

3.20.3.3 void MismatchTable::fix ()

Freezes the parameters to allow for faster computation after burn out.
Cannot be undone.

Definition at line 567 of file mismatchmodel.cpp.

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

3.20 MismatchTable Class Reference 59

3.20.3.4 void MismatchTable::get_indices (const FragHit & f, std::vector< char > &
left_indices, std::vector< char > & left_seq, std::vector< char > & left ref,
std::vector< char > & right_indices, std::vector< char > & right_seq, std::vector<
char > & right_ref) const

A member function that computes and returns the parameter table indices used to com-
pute and update the likelihood based on the given FragHit.

Sequence values are compressed to 2 bits per nucleotide.

Parameters

f| the FragHit to find the table indices for.

left_indices | vector to store the left read’s mismatched positions.

left_seq | vector to store the left read’s mismatched nucleotides (compressed).

match positions.

left_ref vector to store the left read’s reference nucleotides (compressed) at mis-

right_- | vector to store the right read’s mismatched positions.
indices

right_seq | vector to store the rightt read’s mismatched nucleotides (compressed).

match positions.

right_ref | vector to store the right read’s reference nucleotides (compressed) at mis-

Definition at line 159 of file mismatchmodel.cpp.

3.20.3.5 double MismatchTable::log_likelihood (const FragHit & f) const

A member function that returns the log likelihood of mismatches and indels in the
mapping given the current error model parematers.

Returns O if _active is false.

Parameters

f ‘ the fragment mapping to calculate the log likelihood for.

Returns

The log likelihood of the mapping based on mismatches and indels.

Definition at line 264 of file mismatchmodel.cpp.

3.20.3.6 void MismatchTable::update (const FragHit & f, double p, double mass)

A member function that updates the error model parameters based on a mapping and
its (logged) mass.

Also updates the sequence parameters if they are probabilistic and active_ is true.

Parameters

‘ f ‘ the fragment mapping.

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

60 Class Documentation

p | the logged posterior probablity of the alignment.

mass | the logged mass of the fragment.

Definition at line 393 of file mismatchmodel.cpp.

The documentation for this class was generated from the following files:

* src/mismatchmodel.h

* src/biascorrection.cpp

* src/lengthdistribution.cpp
e src/mismatchmodel.cpp

3.21 Parser Class Reference

The Parser class is an abstract class for implementing a SAMParser or BAMParser.
#include <mapparser.h>

Inheritance diagram for Parser:

IBAMParserl |SAMParser|

Public Member Functions

e virtual ~Parser ()

Dummy destructor.

e virtual const std::string header () const =0

An accessor for the SAM header string.

* const TransIndex & targ_index () const

An accessor for the target name to index map.

* const TransIndex & targ_lengths () const

An accessor for the target-to-length map.

* virtual bool next_fragment (Fragment &f)=0

A member function that loads all mappings of the next fragment into the given Frag-
ment object.

e virtual void reset ()=0

A member function that resets the parser and rewinds to the beginning of the input.

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

3.21 Parser Class Reference 61

Protected Attributes

e TransIndex _targ_index

The private target-to-index map.

* TransIndex _targ_lengths

The private target-to-length map.

e ReadHit * _read_buff

A private pointer to the current/last read mapping being parsed.

3.21.1 Detailed Description

The Parser class is an abstract class for implementing a SAMParser or BAMParser. It
fills Fragment objects by parsing an input file in SAM/BAM format.

Author
Adam Roberts

Date
2011 Artistic License 2.0

Definition at line 39 of file mapparser.h.

3.21.2 Member Function Documentation
3.21.2.1 virtual const std::string Parser::header ()const [pure virtual]
An accessor for the SAM header string.

Returns

The SAM header string.

Implemented in BAMParser, and SAMParser.

3.21.2.2 virtual bool Parser::next_fragment (Fragment& f) [pure virtual]

A member function that loads all mappings of the next fragment into the given Frag-
ment object.

Parameters

\ f| the empty Fragment to add mappings to.

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

62 Class Documentation

Returns

True iff more reads remain in the SAM/BAM file/stream.

Implemented in BAMParser, and SAMParser.

3.21.2.3 const TransIndex& Parser::targ_index ()const [inline]

An accessor for the target name to index map.

Returns a reference that does not outlive this.

Returns

Reference to the target-to-index map.

Definition at line 69 of file mapparser.h.

3.21.2.4 const TransIndex& Parser::targ_lengths ()Jconst [inline]

An accessor for the target-to-length map.

Returns a reference that does not outlive this.

Returns

Reference to the target-to-length map.

Definition at line 75 of file mapparser.h.

The documentation for this class was generated from the following file:

* src/mapparser.h

3.22 ParseThreadSafety Struct Reference

The ParseThreadSafety struct stores objects to allow for parsing to safely occur on a
separate thread from processing.

#include <threadsafety.h>

Public Member Functions

» ParseThreadSafety (size_t q_size)

PraseThreadSafety constructor intializes queues to the given size.

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

3.22 ParseThreadSafety Struct Reference

63

Public Attributes

e ThreadSafeFragQueue proc_in

A public ThreadSafeFragQueue of pointers to Fragments that have been parsed but

not pre-processed.

» ThreadSafeFragQueue proc_on

A public ThreadSafeFragQueue of pointers to Fragments that have been pre-processed

but not processed.

e ThreadSafeFragQueue proc_out

A public ThreadSafeFragQueue of pointers to Fragments that have been processed

but not post-processed.

3.22.1 Detailed Description

The ParseThreadSafety struct stores objects to allow for parsing to safely occur on a

separate thread from processing.

Author
Adam Roberts

Date
2011 Artistic License 2.0

Definition at line 85 of file threadsafety.h.

3.22.2 Constructor & Destructor Documentation
3.22.2.1 ParseThreadSafety::ParseThreadSafety (size_tg_size) [inline]
PraseThreadSafety constructor intializes queues to the given size.

Parameters

‘ q_size ‘ the maximum size for the ThreadSafeFragQueues.

Definition at line 105 of file threadsafety.h.

The documentation for this struct was generated from the following file:

* src/threadsafety.h

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

64 Class Documentation

3.23 ReadHit Struct Reference

The ReadHit struct stores information for a single read alignment.

#include <fragments.h>

Public Attributes

* std::string name

A public string for the SAM "Query Template Name" (fragment name)

* bool first
A public bool specifying if this read was sequenced first according to the SAM flag.

¢ bool reversed

A public bool specifying if this read was reverse complemented in its alignment ac-
cording to the SAM flag.

* size_t targ_id

A public TarglD for the target mapped to.

e size_t left

A public size_t containing the 0-based leftmost coordinate mapped to in the target.

* size_tright

A public size_t containing the position following the 0-based rightmost coordinate
mapped to in the target.

* SequenceFwd seq

The read sequence.

e std::vector< Indel > inserts

A public vector of Indel objects storing all insertions to the reference in the read.

¢ std::vector< Indel > deletes

A public vector of Indel objects storing all insertions to the reference in the read.

¢ BamTools::BamAlignment bam

A public BamAlignment object storing the raw alignment information from BamTools
for the read.

* std::string sam

A public string storing the raw alignment information from for the read.

e int mate_l

A public int containing the left position for the mate of the read.

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

3.23 ReadHit Struct Reference 65

3.23.1 Detailed Description

The ReadHit struct stores information for a single read alignment.

Author
Adam Roberts

Date
2012 Artistic License 2.0

Definition at line 63 of file fragments.h.

3.23.2 Member Data Documentation
3.23.2.1 BamTools::BamAlignment ReadHit::bam

A public BamAlignment object storing the raw alignment information from BamTools
for the read.
Only valid if BAM file is input.

Definition at line 111 of file fragments.h.

3.23.2.2 std::vector<Indel > ReadHit::deletes

A public vector of Indel objects storing all insertions to the reference in the read.
Deletions are stored in read order.

Definition at line 106 of file fragments.h.

3.23.2.3 std::vector<Indel> ReadHit::inserts

A public vector of Indel objects storing all insertions to the reference in the read.
Insertions are stored in read order.

Definition at line 101 of file fragments.h.

3.23.2.4 int ReadHit::mate_l

A public int containing the left position for the mate of the read.

-1 if single-end fragment. This is temporarily used to help find the mate but is not used
after.

Definition at line 122 of file fragments.h.

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

66 Class Documentation

3.23.25 bool ReadHit::reversed

A public bool specifying if this read was reverse complemented in its alignment ac-
cording to the SAM flag.

This would also imply that the read is the left end of the fragment.

Definition at line 78 of file fragments.h.

3.23.2.6 std::string ReadHit::sam

A public string storing the raw alignment information from for the read.
Only valid if SAM file is input.
Definition at line 116 of file fragments.h.

The documentation for this struct was generated from the following file:

* src/fragments.h

3.24 Result Struct Reference

Public Member Functions

¢ void set_zeros ()

Public Attributes

* double fpkm

¢ double fpkm_std_dev
¢ double fpkm_lo

* double fpkm_hi

* double count_alpha

¢ double count_beta

¢ double est_counts

¢ double eff_len

¢ double eff counts

* double cpb

3.24.1 Detailed Description

Definition at line 527 of file targets.cpp.

The documentation for this struct was generated from the following file:

* src/targets.cpp

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

3.25 RobertsFilter Class Reference 67

3.25 RobertsFilter Class Reference

The RobertsFilter class implements a datastructure to test for repeats of a key with high
probability, when repeats are most likely to be nearby.

#include <robertsfilter.h>

Public Member Functions

» RobertsFilter (size_t local_size=DEFAULT_LOC_SIZE, size_t global_size=DEFAULT _-
GLOB_SIZE)

RobertsFilter constructor sets the size of the sets.

* bool test_and_push (const std::string &key)

A member function that tests for membership of the key in either set.

3.25.1 Detailed Description

The RobertsFilter class implements a datastructure to test for repeats of a key with
high probability, when repeats are most likely to be nearby. Recently observed keys
are stored in a local set for a certain number of observations (set by local_size). After
this number of observations, it is removed from the local set, and placed in the global
set, displacing a random element of this set. To be used when the full set cannot be
stored in memory.

Author
Adam Roberts

Date
2011 Artistic License 2.0

Definition at line 30 of file robertsfilter.h.

3.25.2 Constructor & Destructor Documentation

3.25.2.1 RobertsFilter::RobertsFilter (size_t local_size =DEFAULT_LOC_SIZE, size_t
global_size =DEFAULT _GLOB_SIZE)

RobertsFilter constructor sets the size of the sets.

Parameters

local_size | the maximum number of keys to store in the local set.
global_size | the maximum number of keys to store in the global set.

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

68 Class Documentation

Definition at line 13 of file robertsfilter.cpp.

3.25.3 Member Function Documentation
3.25.3.1 bool RobertsFilter::test_and_push (const std::string & key)

A member function that tests for membership of the key in either set.

If not found, the key is added to the local set, possibly pushing the oldest key in the
local set into the global set, which may displace a global key.

Parameters

‘ key ‘ the key to be tested for and pushed into the local set.

Returns

True iff the key is in the local or global set.

Definition at line 19 of file robertsfilter.cpp.

The documentation for this class was generated from the following files:

* src/robertsfilter.h
* src/robertsfilter.cpp

3.26 RoundParams Struct Reference

The RoundParams struct stores the target parameters unique to a given round (iteration)
of EM.

#include <targets.h>

Public Member Functions

¢ RoundParams ()

RoundParams constructor sets initial values for parameters.

Public Attributes

¢ double mass

A public double that stores the (logged) assigned mass based on observed fragment
mapping probabilities.

* double ambig_mass

A public double that stores the (logged) assigned ambiguous mass based on observed
fragment mapping probabilities.

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

3.27 SAMParser Class Reference 69

* double tot_ambig_mass

A public double that stores the (logged) total mass of ambiguous fragments mapping
to the target.

¢ double mass_var

A public double that stores the (logged) variance due to uncertainty on p.

¢ double var_sum

A public double that stores the (logged) weighted sum of the variance on the assign-
ments.

* boost::shared_ptr< HaplotypeHandler > haplotype

3.26.1 Detailed Description

The RoundParams struct stores the target parameters unique to a given round (iteration)
of EM.

Author
Adam Roberts

Date
2012 Artistic License 2.0

Definition at line 40 of file targets.h.

The documentation for this struct was generated from the following file:

e src/targets.h

3.27 SAMParser Class Reference

The SAMParser class fills Fragment objects by parsing an input in SAM format.
#include <mapparser.h>

Inheritance diagram for SAMParser:

SAMParser

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

70 Class Documentation

Public Member Functions

SAMParser (std::istream *in)

SAMParser constructor removes the header and parses the first line to start the first
Fragment.

* const std::string header () const

An accessor for the header string.

* bool next_fragment (Fragment &f)

A member function that loads all mappings of the next fragment into the given Frag-
ment object.

¢ void reset ()

A member function that resets the parser and rewinds to the beginning of the SAM

file.

3.27.1 Detailed Description

The SAMParser class fills Fragment objects by parsing an input in SAM format. The
input may come from a file or stdin.

Author
Adam Roberts

Date
2011 Artistic License 2.0

Definition at line 174 of file mapparser.h.

3.27.2 Constructor & Destructor Documentation
3.27.2.1 SAMParser::SAMParser (std::istream x in)

SAMParser constructor removes the header and parses the first line to start the first
Fragment.

Parameters

\ in | the input stream in SAM format, which may be a file or stdin.

Definition at line 355 of file mapparser.cpp.

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

3.28 SAMWriter Class Reference 71

3.27.3 Member Function Documentation
3.27.3.1 const std::string SAMParser::header (Jconst [inline, virtuall]
An accessor for the header string.

Returns

The header string.

Implements Parser.
Definition at line 203 of file mapparser.h.
3.27.3.2 bool SAMParser::next_fragment (Fragment&f) [virtual]

A member function that loads all mappings of the next fragment into the given Frag-
ment object.

Parameters

\ f| the empty Fragment to add mappings to.

Returns

True iff more reads remain in the SAM/BAM file/stream.

Implements Parser.
Definition at line 400 of file mapparser.cpp.
The documentation for this class was generated from the following files:

* src/mapparser.h
* src/mapparser.cpp

3.28 SAMWriter Class Reference

The SAMWriter class writes Fragment objects back to file in SAM format with per-
mapping probabilistic assignments, or by sampling a single mapping based on assign-
ment probabilities.

#include <mapparser.h>

Inheritance diagram for SAMWriter:

Writer

SAMWriter

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

72 Class Documentation

Public Member Functions

* SAMWriter (std::ostream xout, bool sample)

SAMWriter constructor stores a pointer to the output stream.

e ~SAMWriter ()
SAMWriter destructor flushes the output stream.

* void write_fragment (Fragment &f)

A member function that writes the mappings to the output SAM file.

3.28.1 Detailed Description
The SAMWriter class writes Fragment objects back to file in SAM format with per-
mapping probabilistic assignments, or by sampling a single mapping based on assign-

ment probabilities.

Author
Adam Roberts

Date
2011 Artistic License 2.0

Definition at line 267 of file mapparser.h.

3.28.2 Constructor & Destructor Documentation
3.28.2.1 SAMWriter::SAMWriter (std::ostream x out, bool sample)

SAMWriter constructor stores a pointer to the output stream.

Parameters

out | SAM output stream

or all output with their respective posterior probabilities (false).

sample | specifies if a single alignment should be sampled based on posteriors (true)

Definition at line 587 of file mapparser.cpp.

3.28.3 Member Function Documentation
3.28.3.1 void SAMWriter::write_fragment (Fragment & f) [virtual]

A member function that writes the mappings to the output SAM file.

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

3.29 Sequence Class Reference 73

If _sample is true, a only one alignment is output, otherwise all mappings are output
along with their probabilities in the "XP" field.

Parameters

‘ f ‘ the processed Fragment to output alignments of.

Implements Writer.
Definition at line 595 of file mapparser.cpp.

The documentation for this class was generated from the following files:

e src/mapparser.h
* src/mapparser.cpp

3.29 Sequence Class Reference

The Sequence class is an abstract class whose implmentations are used to store and
access encoded nucleotide sequences.

#include <sequence.h>

Inheritance diagram for Sequence:

Sequence
i

SequenceFwd | | SequenceRev

Public Member Functions

* Sequence ()

Dummy Sequence constructor.

* virtual ~Sequence ()

Dummy Sequence destructor.

* virtual void set (const std::string &seq, bool rev)=0

A member function that encodes the given sequence and overwrites the current stored
sequence with it.

* virtual size_t operator[] (const size_t index) const =0

An accessor for the encoded character at the given index.

e virtual size_t get_ref (const size_t index) const =0

An accessor for the encoded reference character at the given index.

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

74

Class Documentation

* virtual void update_est (const size_t index, const size_t nuc, float mass)=0

A member function that updates the posterior nucleotide distribution if probabilistic.

* virtual void update_obs (const size_t index, const size_t nuc, float mass)=0

A member function that updates the observed frequency distribution if probabilistic.

* virtual void update_exp (const size_t index, const size_t nuc, float mass)=0

A member function that updates the expected frequency distribution if probabilistic.

* virtual float get_prob (const size_t index, const size_t nuc) const =0

An accessor for the posterior nucleotide distribution (logged).

« virtual float get_obs (const size_t index, const size_t nuc) const =0

An accessor for the observed nucleotide frequency (logged).

* virtual float get_exp (const size_t index, const size_t nuc) const =0

An accessor for the expected nucleotide frequency (logged).

* virtual bool prob () const =0

Accessor to determine if the sequence is probabilistic.

e virtual size_t length () const =0

An accessor for the length of the encoded sequence.

* virtual bool empty () const =0

Accessor to determine if the sequence has 0 length.

* virtual void calc_p_vals (std::vector< double > &p_vals) const =0

A member function that calculates p-values based on the observed and expected nu-
cleotide frequences for the sequence.

* std::string serialize ()

A member function to serialize a string into an array of bytes, with each nucleotide
represented by 2 bits.

3.29.1 Detailed Description

The Sequence class is an abstract class whose implmentations are used to store and ac-
cess encoded nucleotide sequences. They also supports probabilistic sequences, mean-
ing that each position stores a distribution over nucleotides.

Author

Adam Roberts

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

3.29 Sequence Class Reference 75

Date

2012 Artistic License 2.0

Definition at line 58 of file sequence.h.

3.29.2 Member Function Documentation

3.29.2.1 Vvirtual void Sequence::calc_p_vals (std::vector< double > & p_vals)const [pure
virtual]

A member function that calculates p-values based on the observed and expected nu-
cleotide frequences for the sequence.

Experimental.

Parameters

p_vals

a reference to an empty vector of doubles to fill with p-values at each posi-
tion.

Implemented in SequenceFwd, and SequenceRev.

3.29.2.2 virtual bool Sequence::empty ()const [pure virtual]

Accessor to determine if the sequence has 0 length.

Returns

True iff the sequence has 0 length.

Implemented in SequenceFwd, and SequenceRev.

3.29.2.3 virtual float Sequence::get_exp (const size_t index, const size_t nuc)const [pure
virtual]

An accessor for the expected nucleotide frequency (logged).

Parameters

index

the index of the position to access.

nuc

the nucleotide to return the frequency of.

Returns

The logged expected frequency of the given nucleotide a the given position.

Implemented in SequenceFwd, and SequenceRev.

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

76 Class Documentation

3.29.2.4 virtual float Sequence::get_obs (const size_t index, const size_t nuc) const [pure
virtuall]

An accessor for the observed nucleotide frequency (logged).

Parameters

index | the index of the position to access.

nuc | the nucleotide to return the frequency of.

Returns

The logged observed frequency of the given nucleotide a the given position.

Implemented in SequenceFwd, and SequenceRev.

3.29.25 Vvirtual float Sequence::get_prob (const size_t index, const size_t nuc) const
[pure virtual]

An accessor for the posterior nucleotide distribution (logged).

Parameters

index | the index of the position to access.

nuc | the nucleotide to return the probability of.

Returns

The logged posterior probability of the given nucleotide at the given position.

Implemented in SequenceFwd, and SequenceRev.

3.29.2.6 virtual size_t Sequence::get_ref (const size_t index)const [pure virtual]

An accessor for the encoded reference character at the given index.

May differ from the operator([] if the sequence is probabilistic.

Parameters

index | the index of the encoded reference character to return (assumed to be <
_len)

Returns

The encoded reference character at the given index.

Implemented in SequenceFwd, and SequenceRev.

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

3.29 Sequence Class Reference 77

3.29.2.7 virtual size_t Sequence::length ()const [pure virtuall]

An accessor for the length of the encoded sequence.

Returns

The length of the encoded sequence.

Implemented in SequenceFwd, and SequenceRev.

3.29.2.8 virtual size_t Sequence::operator[] (const size_t index) const [pure
virtual]

An accessor for the encoded character at the given index.

If the sequence is probabilistic, returns the mode. Otherwise, returns the reference.

Parameters

\ index \ the index of the encoded character to return (assumed to be < _len)

Returns

The encoded character at the given index.

Implemented in SequenceFwd, and SequenceRev.

3.29.2.9 virtual bool Sequence::prob()const [pure virtuall]
Accessor to determine if the sequence is probabilistic.

Returns

True iff the sequence is probabilistic.

Implemented in SequenceFwd, and SequenceRev.

3.29.2.10 virtual void Sequence::set (const std::string & seq, bool rev) [pure
virtual]

A member function that encodes the given sequence and overwrites the current stored
sequence with it.

Parameters

seq | the nucleotide sequence to encode and store.

rev | aboolean if the sequence should be reverse complemented before encoding.

Implemented in SequenceFwd, and SequenceRev.

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

78 Class Documentation

3.29.2.11 virtual void Sequence::update_est (const size_t index, const size_t nuc, float mass)
[pure virtual]

A member function that updates the posterior nucleotide distribution if probabilistic.

Parameters

index | the index of the position to update.

nuc | the nucleotide to increment the mass of.

mass | the amount to increment the nucleotide’s mass by.

Implemented in SequenceFwd, and SequenceRev.

3.29.2.12 virtual void Sequence::update_exp (const size_t index, const size_t nuc, float mass)
[pure virtual]

A member function that updates the expected frequency distribution if probabilistic.

Parameters

index | the index of the position to update.

nuc | the nucleotide to increment the mass of.

mass | the amount to increment the nucleotide’s mass by.

Implemented in SequenceFwd, and SequenceRev.

3.29.2.13 virtual void Sequence::update_obs (const size_t index, const size_t nuc, float mass)
[pure virtual]

A member function that updates the observed frequency distribution if probabilistic.

Parameters

index | the index of the position to update.

nuc | the nucleotide to increment the mass of.

mass | the amount to increment the nucleotide’s mass by.

Implemented in SequenceFwd, and SequenceRev.

The documentation for this class was generated from the following files:

* src/sequence.h
* src/sequence.cpp

3.30 SequenceFwd Class Reference

The SequenceFwd class implements the Sequence abstract class for storing the forward
sequence.

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

3.30 SequenceFwd Class Reference 79

#include <sequence.h>

Inheritance diagram for SequenceFwd:

Sequence

SequenceFwd

Public Member Functions

* SequenceFwd ()

Dummy SequenceFwd constructor.

* SequenceFwd (const std::string &seq, bool rev, bool prob=false)

SequenceFwd constructor encodes and stores the given nucleotide sequence.

» SequenceFwd (const SequenceFwd &other)

SequenceFwd copy constructor.

» SequenceFwd & operator= (const SequenceFwd &other)

SequenceFwd assignment constructor, copies the given SequenceFwd object.

* void set (const std::string &seq, bool rev)

A member function that encodes the given sequence and overwrites the current stored
sequence with it.

* size_t operator|[] (const size_t index) const

An accessor for the encoded character at the given index.

* size_t get_ref (const size_t index) const

An accessor for the encoded reference character at the given index.

* float get_exp (const size_t index, const size_t nuc) const

An accessor for the expected nucleotide frequency (logged).

* float get_obs (const size_t index, const size_t nuc) const

An accessor for the observed nucleotide frequency (logged).

* void update_est (const size_t index, const size_t nuc, float mass)

A member function that updates the posterior nucleotide distribution if probabilistic.

* void update_obs (const size_t index, const size_t nuc, float mass)

A member function that updates the observed frequency distribution if probabilistic.

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

80 Class Documentation

* void update_exp (const size_t index, const size_t nuc, float mass)

A member function that updates the expected frequency distribution if probabilistic.

* float get_prob (const size_t index, const size_t nuc) const

An accessor for the posterior nucleotide distribution (logged).

* bool prob () const

Accessor to determine if the sequence is probabilistic.

* bool empty () const

Accessor to determine if the sequence has 0 length.

* size_t length () const

An accessor for the length of the encoded sequence.

* void calc_p_vals (std::vector< double > &p_vals) const

A member function that calculates p-values based on the observed and expected nu-
cleotide frequences for the sequence.

3.30.1 Detailed Description
The SequenceFwd class implements the Sequence abstract class for storing the forward
sequence. Documentation is only provided for methods not documented in the abstract

Sequence class.

Author
Adam Roberts

Date
2012 Artistic License 2.0

Definition at line 177 of file sequence.h.

3.30.2 Constructor & Destructor Documentation

3.30.2.1 SequenceFwd::SequenceFwd (const std::string & seq, bool rey, bool prob=false

)

SequenceFwd constructor encodes and stores the given nucleotide sequence.

Parameters

seq | the nucleotide sequence string to encode and store. \
rev | a boolean if the sequence should be reverse complemented before encoding. ‘

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

3.30 SequenceFwd Class Reference 81

Definition at line 30 of file sequence.cpp.

3.30.2.2 SequenceFwd::SequenceFwd (const SequenceFwd & other)

SequenceFwd copy constructor.

Parameters

‘ other ‘ the SequenceFwd object to copy.

Definition at line 40 of file sequence.cpp.

3.30.3 Member Function Documentation

3.30.3.1 void SequenceFwd::calc_p_vals (std::vector< double > & p_vals) const
[virtual]

A member function that calculates p-values based on the observed and expected nu-
cleotide frequences for the sequence.

Experimental.

Parameters

p_vals

a reference to an empty vector of doubles to fill with p-values at each posi-
tion.

Implements Sequence.

3.30.3.2 bool SequenceFwd::empty ()const [inline, virtual]

Accessor to determine if the sequence has 0 length.

Returns

True iff the sequence has O length.

Implements Sequence.

Definition at line 242 of file sequence.h.

3.30.3.3 float SequenceFwd::get_exp (const size_t index, const size_t nuc) const
[virtual]

An accessor for the expected nucleotide frequency (logged).

Parameters

index

the index of the position to access.

nuc

the nucleotide to return the frequency of.

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

82 Class Documentation

Returns

The logged expected frequency of the given nucleotide a the given position.

Implements Sequence.

Definition at line 99 of file sequence.cpp.

3.30.3.4 float SequenceFwd::get_obs (const size_t index, const size_t nuc) const
[virtual]

An accessor for the observed nucleotide frequency (logged).

Parameters

index | the index of the position to access.

nuc | the nucleotide to return the frequency of.

Returns

The logged observed frequency of the given nucleotide a the given position.

Implements Sequence.

Definition at line 94 of file sequence.cpp.

3.30.3.5 float SequenceFwd::get_prob (const size_t index, const size_t nuc) const
[virtual]

An accessor for the posterior nucleotide distribution (logged).

Parameters

index | the index of the position to access.

nuc | the nucleotide to return the probability of.

Returns

The logged posterior probability of the given nucleotide at the given position.

Implements Sequence.

Definition at line 89 of file sequence.cpp.

3.30.3.6 size_t SequenceFwd::get_ref (const size_t index)const [virtual]

An accessor for the encoded reference character at the given index.

May differ from the operator[] if the sequence is probabilistic.

Parameters

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

3.30 SequenceFwd Class Reference 83

index | the index of the encoded reference character to return (assumed to be <
_len)

Returns

The encoded reference character at the given index.

Implements Sequence.

Definition at line 83 of file sequence.cpp.

3.30.3.7 size_t SequenceFwd::length()const [inline, virtuall]

An accessor for the length of the encoded sequence.

Returns

The length of the encoded sequence.

Implements Sequence.

Definition at line 243 of file sequence.h.

3.30.3.8 SequenceFwd & SequenceFwd::operator= (const SequenceFwd & other)

SequenceFwd assignment constructor, copies the given SequenceFwd object.

Parameters

‘ other | the Sequence object to copy.

Definition at line 50 of file sequence.cpp.

3.30.3.9 size_t SequenceFwd::operator[] (const size_t index)const [virtual]

An accessor for the encoded character at the given index.

If the sequence is probabilistic, returns the mode. Otherwise, returns the reference.

Parameters

‘ index ‘ the index of the encoded character to return (assumed to be < _len)

Returns

The encoded character at the given index.

Implements Sequence.

Definition at line 75 of file sequence.cpp.

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

84

Class Documentation

3.30.3.10 bool SequenceFwd::prob()const [inline, virtual]

Accessor to determine if the sequence is probabilistic.

Returns

True iff the sequence is probabilistic.

Implements Sequence.

Definition at line 241 of file sequence.h.

3.30.3.11 void SequenceFwd::set (const std::string & seq, bool rev) [virtuall]

A member function that encodes the given sequence and overwrites the current stored
sequence with it.

Parameters

seq

the nucleotide sequence to encode and store.

rey

a boolean if the sequence should be reverse complemented before encoding.

Implements Sequence.

Definition at line 63 of file sequence.cpp.

3.30.3.12 void SequenceFwd::update_est (const size_t index, const size_t nuc, float mass)
[virtual]

A member function that updates the posterior nucleotide distribution if probabilistic.

Parameters

index

the index of the position to update.

nuc

the nucleotide to increment the mass of.

mass

the amount to increment the nucleotide’s mass by.

Implements Sequence.

Definition at line 104 of file sequence.cpp.

3.30.3.13 void SequenceFwd::update_exp (const size_t index, const size_t nuc, float mass)
[virtual]

A member function that updates the expected frequency distribution if probabilistic.

Parameters

index

the index of the position to update.

nuc

the nucleotide to increment the mass of.

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

3.31 SequenceRev Class Reference 85

‘ mass ‘ the amount to increment the nucleotide’s mass by.

Implements Sequence.

Definition at line 114 of file sequence.cpp.

3.30.3.14 void SequenceFwd::update_obs (const size_t index, const size_t nuc, float mass)
[virtual]

A member function that updates the observed frequency distribution if probabilistic.

Parameters

index | the index of the position to update.

nuc | the nucleotide to increment the mass of.

mass | the amount to increment the nucleotide’s mass by.

Implements Sequence.
Definition at line 109 of file sequence.cpp.

The documentation for this class was generated from the following files:

* src/sequence.h
* src/sequence.cpp

3.31 SequenceRev Class Reference

The SequenceRev class implements the Sequence abstract class for accessing the re-
verse sequence.

#include <sequence.h>

Inheritance diagram for SequenceRev:

Sequence

SequenceRev

Public Member Functions

* SequenceRev (SequenceFwd &seq)
* size_t length () const

An accessor for the length of the encoded sequence.

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

86 Class Documentation

* bool empty () const

Accessor to determine if the sequence has 0 length.

* void set (const std::string &seq, bool rev)

A member function that encodes the given sequence and overwrites the current stored
sequence with it.

* size_t operator[] (const size_t index) const

An accessor for the encoded character at the given index.

* size_t get_ref (const size_t index) const

An accessor for the encoded reference character at the given index.

* float get_obs (const size_t index, const size_t nuc) const

An accessor for the observed nucleotide frequency (logged).

* float get_exp (const size_t index, const size_t nuc) const

An accessor for the expected nucleotide frequency (logged).

* void update_est (const size_t index, const size_t nuc, float mass)

A member function that updates the posterior nucleotide distribution if probabilistic.

* void update_obs (const size_t index, const size_t nuc, float mass)

A member function that updates the observed frequency distribution if probabilistic.

* void update_exp (const size_t index, const size_t nuc, float mass)

A member function that updates the expected frequency distribution if probabilistic.

* float get_prob (const size_t index, const size_t nuc) const

An accessor for the posterior nucleotide distribution (logged).

* bool prob () const

Accessor to determine if the sequence is probabilistic.

¢ void calc_p_vals (std::vector< double > &p_vals) const

A member function that calculates p-values based on the observed and expected nu-
cleotide frequences for the sequence.

3.31.1 Detailed Description

The SequenceRev class implements the Sequence abstract class for accessing the re-
verse sequence. Documentation is only provided for methods not documented in the
abstract Sequence class and SequenceFwd class. This class acts by storing a pointer to
a SequenceFwd object and reverse complementing

the input and output appropriately.

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

3.31 SequenceRev Class Reference 87

Author

Adam Roberts

Date

2012 Artistic License 2.0

Definition at line 258 of file sequence.h.

3.31.2 Member Function Documentation

3.31.2.1 void SequenceRev::calc_p_vals (std::vector< double > & p_vals) const
[virtual]

A member function that calculates p-values based on the observed and expected nu-
cleotide frequences for the sequence.

Experimental.

Parameters

p_vals

a reference to an empty vector of doubles to fill with p-values at each posi-
tion.

Implements Sequence.

Definition at line 119 of file sequence.cpp.

3.31.2.2 bool SequenceRev::empty ()const [inline, virtual]

Accessor to determine if the sequence has O length.

Returns

True iff the sequence has 0 length.

Implements Sequence.

Definition at line 274 of file sequence.h.

3.31.2.3 float SequenceRev::get_exp (const size_t index, const size_t nuc) const
[inline, virtual]

An accessor for the expected nucleotide frequency (logged).

Parameters

index

the index of the position to access.

nuc

the nucleotide to return the frequency of.

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

88 Class Documentation

Returns

The logged expected frequency of the given nucleotide a the given position.

Implements Sequence.

Definition at line 288 of file sequence.h.

3.31.2.4 float SequenceRev::get_obs (const size_t index, const size_t nuc) const
[inline, virtual]

An accessor for the observed nucleotide frequency (logged).

Parameters

index | the index of the position to access.

nuc | the nucleotide to return the frequency of.

Returns

The logged observed frequency of the given nucleotide a the given position.

Implements Sequence.

Definition at line 286 of file sequence.h.

3.31.2.5 float SequenceRev::get_prob (const size_t index, const size_t nuc) const
[inline, virtual]

An accessor for the posterior nucleotide distribution (logged).

Parameters

index | the index of the position to access.

nuc | the nucleotide to return the probability of.

Returns

The logged posterior probability of the given nucleotide at the given position.

Implements Sequence.

Definition at line 296 of file sequence.h.

3.31.2.6 size_t SequenceRev::get_ref (constsize_ tindex)const [inline, virtuall]

An accessor for the encoded reference character at the given index.

May differ from the operator[] if the sequence is probabilistic.

Parameters

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

3.31 SequenceRev Class Reference 89

index

the index of the encoded reference character to return (assumed to be <
_len)

Returns

The encoded reference character at the given index.

Implements Sequence.

Definition at line 284 of file sequence.h.

3.31.2.7 size_t SequenceRev::length()const [inline, virtual]

An accessor for the length of the encoded sequence.

Returns

The length of the encoded sequence.

Implements Sequence.

Definition at line 268 of file sequence.h.

3.31.2.8 size_t SequenceRev::operator[] (const size_t index)const [inline,
virtual]

An accessor for the encoded character at the given index.

If the sequence is probabilistic, returns the mode. Otherwise, returns the reference.

Parameters

‘ index ‘ the index of the encoded character to return (assumed to be < _len)

Returns

The encoded character at the given index.

Implements Sequence.

Definition at line 282 of file sequence.h.

3.31.2.9 bool SequenceRev::prob()const [inline, virtual]

Accessor to determine if the sequence is probabilistic.

Returns

True iff the sequence is probabilistic.

Implements Sequence.

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

90 Class Documentation

Definition at line 298 of file sequence.h.

3.31.2.10 void SequenceRev::set (const std::string & seq, boolrev) [inline,
virtual]

A member function that encodes the given sequence and overwrites the current stored
sequence with it.

Parameters

seq | the nucleotide sequence to encode and store.

rev | aboolean if the sequence should be reverse complemented before encoding.

Implements Sequence.

Definition at line 281 of file sequence.h.

3.31.2.11 void SequenceRev::update_est (const size_t index, const size_t nuc, float mass)
[inline, virtual]

A member function that updates the posterior nucleotide distribution if probabilistic.

Parameters

index | the index of the position to update.

nuc | the nucleotide to increment the mass of.

mass | the amount to increment the nucleotide’s mass by.

Implements Sequence.

Definition at line 290 of file sequence.h.

3.31.2.12 void SequenceRev::update_exp (const size_t index, const size_t nuc, float mass)
[inline, virtual]

A member function that updates the expected frequency distribution if probabilistic.

Parameters

index | the index of the position to update.

nuc | the nucleotide to increment the mass of.

mass | the amount to increment the nucleotide’s mass by.

Implements Sequence.

Definition at line 294 of file sequence.h.

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

3.32 SeqWeightTable Class Reference 91

3.31.2.13 void SequenceRev::update_obs (const size_t index, const size_t nuc, float mass)
[inline, virtuall]

A member function that updates the observed frequency distribution if probabilistic.

Parameters

index | the index of the position to update.

nuc | the nucleotide to increment the mass of.

mass | the amount to increment the nucleotide’s mass by.

Implements Sequence.
Definition at line 292 of file sequence.h.

The documentation for this class was generated from the following files:

* src/sequence.h
* src/sequence.cpp

3.32 SeqWeightTable Class Reference

The SeqWeightTable class keeps track of sequence-specific bias parameters.

#include <biascorrection.h>

Public Member Functions

* SeqWeightTable (size_t window_size, size_t order, double alpha)

SeqWeightTable Constructor.

* SeqWeightTable (size_t window_size, size_t order, std::string param_file_name,
std::string identifier)

A second constructor that loads the distribution from a parameter file.

* void copy_observed (const SeqWeightTable &other)

A member function that overwrites the "observed" parameters with those from another
SeqWeightTable.

* void copy_expected (const SeqWeightTable &other)

A member function that overwrites the "expected" parameters with those from another
SeqWeightTable.

* void increment_expected (const Sequence &seq, double mass, const std::vector<
double > &fl_cdf)

A member function that increments the expected counts for a sliding window through
the given target sequence by some mass.

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

92

Class Documentation

* void normalize_expected ()

A member function that normalizes the expected counts and fills in the lower-ordered
marginals.

* void increment_observed (const Sequence &seq, size_t i, double mass)

A member function that increments the observed counts for the given fragment se-
quence by some (logged) mass.

* double get_weight (const Sequence &seq, size_t i) const

A member function that calculates the bias weight (logged) of a window.

* void append_output (std::ofstream &outfile) const

A member function that appends the marginal and conditional probabilities for the
foreground and background Markov models to the given file, formatted in tables for
easy readability.

3.32.1 Detailed Description

The SeqWeightTable class keeps track of sequence-specific bias parameters. Allows for
the bias associated with a given sequence to be calculated, and for the bias parameters
to be updated based on additional observations. All values are stored in log space.

Author

Adam Roberts

Date

2011 Artistic License 2.0

Definition at line 33 of file biascorrection.h.

3.32.2 Constructor & Destructor Documentation

3.32.2.1 SeqWeightTable::SeqWeightTable (size_t window_size, size_t order, double alpha)

SeqWeightTable Constructor.

Parameters

window_size

an unsigned integer specifying the size of the bias window surrounding frag-
ment ends.

order

a size_t specifying the order to use for the Markov chains modelling the
sequence.

alpha

a double specifying the strength of the uniform prior (logged pseudo-counts
for each parameter).

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

3.32 SeqWeightTable Class Reference 93

Definition at line 31 of file biascorrection.cpp.

3.32.2.2 SeqWeightTable::SeqWeightTable (size_t window_size, size_t order, std::string
param_file_name, std::string identifier)

A second constructor that loads the distribution from a parameter file.

Note that the values should not be modified after using this constructor.

Parameters

ment ends. Must match file.

window_size | an unsigned integer specifying the size of the bias window surrounding frag-

sequence. Must match file.

order | a size_t specifying the order to use for the Markov chains modelling the

param_file_- | a string specifying the path to the parameter file.
name

identifier | a string specifying the header for these parameters in the file.

3.32.3 Member Function Documentation

3.32.3.1 void SeqWeightTable::append_output (std::ofstream & outfile) const

A member function that appends the marginal and conditional probabilities for the
foreground and background Markov models to the given file, formatted in tables for

easy readability.

Parameters

\ outfile | the file to append to.

3.32.3.2 void SeqWeightTable::copy_expected (const SeqWeightTable & other)

A member function that overwrites the "expected" parameters with those from another
SeqWeightTable.

Parameters

\ other \ another SeqWeightTable from which to copy the parameters.

Definition at line 95 of file biascorrection.cpp.

3.32.3.3 void SeqWeightTable::copy_observed (const SeqWeightTable & other)

A member function that overwrites the "observed" parameters with those from another
SeqWeightTable.

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

94 Class Documentation

Parameters

‘ other ‘ another SeqWeightTable from which to copy the parameters.

Definition at line 91 of file biascorrection.cpp.

3.32.3.4 double SeqWeightTable::get_weight (const Sequence & seq, size_ti) const

A member function that calculates the bias weight (logged) of a window.

This is the ratio of the observed and expected weights given by the two Markov models.

Parameters

seq | the target sequence.

~.

the central point of the bias window, ie the fragment end.

Returns

The bias weight for the window.

Definition at line 114 of file biascorrection.cpp.

3.32.3.5 void SeqWeightTable::increment_expected (const Sequence & seq, double mass,
const std::vector< double > & fl_cdf)

A member function that increments the expected counts for a sliding window through
the given target sequence by some mass.

Parameters

seq | the target sequence.

mass | the amount to increment by in the parameter table.

fl_cdf | the fragment length CDF.

Definition at line 99 of file biascorrection.cpp.

3.32.3.6 void SeqWeightTable::increment_observed (const Sequence & seq, size_t i, double
mass)

A member function that increments the observed counts for the given fragment se-
quence by some (logged) mass.

Parameters

end maps.

seq | the target sequence (possibly reverse complemented) to which the fragment

fragment starts/ends.

i | the index into the sequence at which to center the bias window, ie where the

mass | the amount to increment by (logged)

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

3.33 Target Class Reference 95

Definition at line 108 of file biascorrection.cpp.

The documentation for this class was generated from the following files:

e src/biascorrection.h
e src/biascorrection.cpp

3.33 Target Class Reference

The Target class is used to store objects for the targets being mapped to.

#include <targets.h>

Public Member Functions

e Target (TargID id, const std::string &name, const std::string &seq, bool prob_-
seq, double alpha, const Librarian xlibs, const BiasBoss xknown_bias_boss,
const LengthDistribution xknown_fld)

Target Constructor.

¢ void lock () const

A member function that locks the target mutex to provide thread safety.

¢ void unlock () const

A member function that unlocks the target mutex.

* const std::string & name () const

An accessor for the target name.

* TargID id () const

An accessor for the target id.

* const Sequence & seq (bool rev=false) const

An accessor for the the target’s Sequence (const).

* Sequence & seq (bool rev)

An accessor for the the target’s Sequence (non-const).

* void haplotype (boost::shared_ptr< HaplotypeHandler > hh)
Mutator for the HaplotypeHandler of the target.

* void alpha (double alpha)

Mutator for the alpha (prior count) parameter of the target.

* size_t length () const

An accessor for the length of the target sequence.

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

96

Class Documentation

double rho () const

An accessor for he current estimated relative abundance of the target.

double mass (bool with_pseudo=true) const

An accessor for the current (logged) probabilistically assigned fragment mass.

double mass_var () const

An accessor for the total (logged) variance on mass.

double var_sum () const

An accessor for the (logged) weighted sum of the variance on assignments.

double tot_ambig_mass () const

An accessor for the the (logged) total mass of ambiguous fragments mapping to the
target.

void round_reset ()

A member function that prepares the target object for the next round of batch EM.

size_t tot_counts () const

An accessor for the current count of fragments mapped to this target either uniquely
or ambiguously.

size_t uniq_counts () const

An accessor for the the current count of fragments uniquely mapped to this target.

Bundle * bundle () const

An accessor for the pointer to the Bundle this Target is a member of.

void bundle (Bundle xb)

A mutator to set the Bundle this Target is a member of.

void add_hit (const FragHit &h, double v, double mass)

A member function that increases the expected fragment counts and variance based
on the assignment parameters of the given FagHit.

void incr_counts (bool uniq, size_t incr_amt=1)

A member function that increases the count of fragments mapped to this target.

double sample_likelihood (bool with_pseudo, const std::vector< const Target
> xneighbors=NULL) const

A member function that returns (a value proportional to) the probability of randomly
sampling a fragment from the target.

double align_likelihood (const FragHit &frag) const

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

3.33 Target Class Reference 97

A member function that returns (a value proportional to) the log likelihood the given
[fragment has the given alignment.

* double est_effective_length (const LengthDistribution *fld=NULL, bool with_-
bias=true) const

A member function that calculates and returns the estimated effective length of the
target (logged) using the average bias.

* double cached_effective_length (bool with_bias=true) const

An accessor for the most recently estimated effective length (logged) as calculated by
the bias updater thread.

* void update_target_bias_buffer (const BiasBoss *bias_table=NULL, const Length-
Distribution *fld=NULL)

A member function that causes the target bias to be re-calculated by the _bias_table
based on curent parameters.

* void swap_bias_parameters ()

Swaps in the buffered bias parameters for atomic updating.

* bool solvable () const

An accessor for the _solvable flag.

¢ void solvable (bool s)

A mutator that sets the _solvable flag.

Friends

* class HaplotypeHandler
e class TargetTable

3.33.1 Detailed Description

The Target class is used to store objects for the targets being mapped to. Besides
storing basic information about the object (id, length), it also stores a mass based on
the number of fragments mapping to the object as well as parameters for variance.
To help with updating these values, it computes the likelihood that a given fragment
originated from it. These values are stored and returned in log space.

Author
Adam Roberts

Date
2011 Artistic License 2.0

Definition at line 90 of file targets.h.

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

98

Class Documentation

3.33.2 Constructor & Destructor Documentation

3.33.2.1 Target::Target (TargID id, const std::string & name, const std::string & seq,
bool prob_seq, double alpha, const Librarian x libs, const BiasBoss
known_bias_boss, const LengthDistribution « known_fld)

Target Constructor.

Parameters

id

a unique TargID identifier.

name

a string that stores the target name.

seq

a string that stores the target sequence.

prob_seq

a bool that specifies if the sequence is to be treated probablistically. For
RDD detection.

alpha

a double that specifies the intial pseudo-counts (non-logged).

libs

a pointer to the struct containing pointers to the global parameter tables
(bias_table, mismatch_table, fid).

known_-
bias_boss

a pointer to bias parameters provided as input, NULL if none given.

known_fld

a pointer to a fragment length distribution provided as input, NULL if none
given.

Definition at line 26 of file targets.cpp.

3.33.3 Member Function Documentation

3.33.3.1 void Target::add_hit (const FragHit & h, double v, double mass)

A member function that increases the expected fragment counts and variance based on
the assignment parameters of the given FagHit.

Parameters

h

the FragHit that is being added.

1%

a double for the (logged) approximate variance (uncertainty) on the proba-
bility p.

mass

a double specifying the (logged) mass of the fragment being mapped.

Definition at line 52 of file targets.cpp.

3.33.3.2 double Target::align_likelihood (const FragHit & frag) const

A member function that returns (a value proportional to) the log likelihood the given
fragment has the given alignment.

Parameters

\ frag ' a FragHit alignment to return the likelihood of.

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

3.33 Target Class Reference

929

Definition at line 129 of file targets.cpp.

3.33.3.3 void Target::alpha (double alpha) [inline]
Mutator for the alpha (prior count) parameter of the target.

Parameters

‘ hh | non-logged value to set alpha to.

Definition at line 272 of file targets.h.

3.33.3.4 void Target::bundle (Bundle xb) [inline]

A mutator to set the Bundle this Target is a member of.

Parameters

‘ b ‘ a pointer to the Bundle to set this Target as a member of.

Definition at line 336 of file targets.h.

3.33.3.5 Bundlex Target::bundle()const [inline]

An accessor for the pointer to the Bundle this Target is a member of.

Returns

A pointer to the Bundle this target is a member of.

Definition at line 331 of file targets.h.

3.33.3.6 double Target::cached_effective_length (bool with_bias = t rue) const

An accessor for the most recently estimated effective length (logged) as calculated by

the bias updater thread.

Parameters

the return value.

with_bias | a boolean specifying whether or not the average bias should be included in

Returns

The cached effective length of the target.

Definition at line 186 of file targets.cpp.

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

100 Class Documentation

3.33.3.7 double Target::est_effective_length (const LengthDistribution * fld = NULL, bool
with_bias = t rue) const

A member function that calculates and returns the estimated effective length of the
target (logged) using the average bias.

Parameters

fld | an optional pointer to a different LengthDistribution than the global one, for
thread-safety.

with_bias | a boolean specifying whether or not the average bias should be included in
the return value.

Returns

The estimated effective length of the target calculated as [= bias ZZLQ D()(L(t) —
1+1).

Definition at line 162 of file targets.cpp.

3.33.3.8 void Target::haplotype (boost::shared_ptr< HaplotypeHandler > hh)
[inline]

Mutator for the HaplotypeHandler of the target.

Parameters

\ hh | a shared pointer to the HaplotypeHandler.

Definition at line 265 of file targets.h.

3.33.3.9 TargID Target::id()const [inline]
An accessor for the target id.

Returns

The target ID.

Definition at line 238 of file targets.h.

3.33.3.10 void Target::incr_counts (bool unig, size_tincramt=1) [inline]

A member function that increases the count of fragments mapped to this target.

Parameters

unig | a bool specifying whether or not the fragment uniquely maps to this target.
incr_amt | a size_t to increase the counts by.

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

3.33 Target Class Reference

101

Definition at line 354 of file targets.h.

3.33.3.11 size_t Target::length()const [inline]
An accessor for the length of the target sequence.

Returns

The target sequence length.

Definition at line 277 of file targets.h.

3.33.3.12 void Target::lock()const [inline]

A member function that locks the target mutex to provide thread safety.

The lock should be held by any thread that calls a method of the Target.

Definition at line 224 of file targets.h.

3.33.3.13 double Target::mass (bool with_pseudo =t rue) const

An accessor for the current (logged) probabilistically assigned fragment mass.

Parameters

mass.

with_pseudo | a boolean specifying whether pseudo-counts should be included in returned

Returns

The logged mass.

Definition at line 99 of file targets.cpp.

3.33.3.14 double Target::mass_var () const

An accessor for the total (logged) variance on mass.

Includes variance due to the initial pseudo-counts.

Returns

The total (logged) variance on mass.

Definition at line 106 of file targets.cpp.

3.33.3.15 const std::string& Target::name()const [inline]

An accessor for the target name.

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

102 Class Documentation

Returns

string containing target name.

Definition at line 233 of file targets.h.

3.33.3.16 double Target::rho () const

An accessor for he current estimated relative abundance of the target.

The value is logged and includes pseudo-counts.

Returns

The current estimated rho.

Definition at line 90 of file targets.cpp.

3.33.3.17 double Target::sample_likelihood (bool with_pseudo, const std::vector< const
Target x > x neighbors =NULL) const

A member function that returns (a value proportional to) the probability of randomly
sampling a fragment from the target.

Parameters

with_pseudo | a bool specifying whether or not pseudo-counts should be included in the
calculation.
neighbors | a vector of Target pointers for neighbors to include in the binned likelihood. ‘

Returns

A value proportional to the log likelihood the given fragment originated from this
target.

Definition at line 110 of file targets.cpp.

3.33.3.18 const Sequence& Target::seq (bool rev=false)const [inline]

An accessor for the the target’s Sequence (const).

Parameters

\ rev \ a bool specifying whether to return the reverse complement.

Returns

Const reference to the target’s Sequence object.

Definition at line 244 of file targets.h.

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

3.33 Target Class Reference 103

3.33.3.19 Sequence& Target::seq (boolrev) [inline]

An accessor for the the target’s Sequence (non-const).

Parameters

‘ rev ‘ a bool specifying whether to return the reverse complement.

Returns

Non-const reference to the target’s Sequence object.

Definition at line 255 of file targets.h.

3.33.3.20 void Target::solvable (bools) [inline]

A mutator that sets the _solvable flag.

Parameters

abundance estimate.

a | boolean specifying whether or not the target has a unique solution for its

Definition at line 428 of file targets.h.

3.33.3.21 bool Target::solvable ()const [inline]

An accessor for the _solvable flag.

Returns

a boolean specifying whether or not the target has a unique solution for its abun-
dance estimate.

Definition at line 422 of file targets.h.

3.33.3.22 void Target::swap_bias_parameters ()

Swaps in the buffered bias parameters for atomic updating.
The target mutex should be held by the caller.
Definition at line 203 of file targets.cpp.

3.33.3.23 double Target::tot_ambig_mass()const [inline]

An accessor for the the (logged) total mass of ambiguous fragments mapping to the
target.

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

104 Class Documentation

Returns

The (logged) total mass of ambiguous fragments mapping to the target.

Definition at line 309 of file targets.h.

3.33.3.24 size_t Target::tot_counts ()const [inline]

An accessor for the current count of fragments mapped to this target either uniquely or
ambiguously.

Returns

The total fragment count.

Definition at line 320 of file targets.h.

3.33.3.25 size_t Target::unig_counts()const [inline]
An accessor for the the current count of fragments uniquely mapped to this target.

Returns

The unique fragment count.

Definition at line 326 of file targets.h.

3.33.3.26 void Target::update_target_bias_buffer (const BiasBoss * bias_table =NULL, const
LengthDistribution * fld = NULL)

A member function that causes the target bias to be re-calculated by the _bias_table
based on curent parameters.

The results are buffered until swap_bias_parameters is called to allow for atomic up-
dating.

Parameters

bias_table | a pointer to a BiasBoss to use as parameters. Bias not updated if NULL.

thread-safety.

fld | an optional pointer to a different LengthDistribution than the global one, for

Definition at line 193 of file targets.cpp.

3.33.3.27 double Target::var_sum()const [inline]

An accessor for the (logged) weighted sum of the variance on assignments.

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

3.34 TargetTable Class Reference 105

Returns

The (logged) weighted sum of the variance on the assignments.

Definition at line 302 of file targets.h.

The documentation for this class was generated from the following files:

e src/targets.h
* src/targets.cpp

3.34 TargetTable Class Reference

The TargetTable class is used to keep track of the Target objects for a run.

#include <targets.h>

Public Member Functions

TargetTable (std::string targ_fasta_file, std::string haplotype_file, bool prob_-
seqs, bool known_aux_params, double alpha, const AlphaMap *alpha_map, const
Librarian *libs)

TargetTable Constructor.

~TargetTable ()

TargetTable Destructor.

Target x get_targ (TargID id)

A member function that returns a pointer to the target with the given id.

void round_reset ()

A member function that readies all Target objects in the table for the next round of
batch EM.

size_t size () const

An accessor for the number of targets in the table.

double total_fpb () const

An accessor for the (logged) total mass per base, including pseudo-counts.

void update_total_fpb (double incr_amt)

a member function that increments the (logged) total mass per base.

void update_covar (TargID targl, TargID targ2, double covar)

A member function that increases the (logged) covariance between two targets by the
specified amount.

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

106 Class Documentation

* double get_covar (TargID targl, TargID targ2)

An accessor for the covariance between two targets.

e size_t covar_size () const

An accessor for number of pairs of targets with non-zero covariance.

* Bundle * merge_bundles (Bundle b1, Bundle xb2)

A member function that merges the given Bundles.

e size_t num_bundles () const

An accessor for the number of bundles in the partition.

¢ void masses_to_counts ()

Renormalized masses to be counts and projects when necessary.

* void output_results (std::string output_dir, size_t tot_counts, bool output_varcov=false,
bool output_rdds=false)

A member function that outputs the final expression data in a file called ’results.xprs’,
(optionally) the variance-covariance matrix in ’varcov.xprs’, and (optionally) the
RDD p-values in the given output directory.

* void asynch_bias_update (boost::mutex xmutex)

A member function to be run asynchronously that continuously updates the back-
ground bias values, target bias values, and target effective lengths.

¢ void enable_bundle_threadsafety ()
¢ void disable_bundle_threadsafety ()
* void collapse_bundles ()

Collapses the merge trees in the BundleTable.

3.34.1 Detailed Description

The TargetTable class is used to keep track of the Target objects for a run. The con-
structor parses a fasta file to generate the Target objects and stores them in a map keyed
by their string id.

Author
Adam Roberts

Date
2011 Artistic License 2.0

Definition at line 520 of file targets.h.

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

3.34 TargetTable Class Reference

107

3.34.2

3.34.2.1

Constructor & Destructor Documentation

TargetTable::TargetTable (std::string targ_fasta_file, std::string haplotype_file, bool

prob_seqs, bool known_aux_params, double alpha, const AlphaMap alpha_map,
const Librarian x libs)

TargetTable Constructor.

Parameters

targ_fasta_-

file

a string storing the path to the fasta file from which to load targets.

haplotype_-
file

a string storing the path to the haplotype file containing comma-separated
target pairs to be considered alternative haplotypes (optional).

prob_seqs

a bool that specifies if the sequence is to be treated probablistically, for RDD
detection.

known_-
aux_params

a bool that is true iff the auxiliary parameters (fid, bias) are provided and
need not be learned.

alpha

a double that specifies the intial pseudo-counts for each bp of the targets
(non-logged).

alpha_map

an optional pointer to a map object that specifies proportional weights of
pseudo-counts for each target.

libs

a pointer to the struct containing pointers to the global parameter tables
(bias_table, mismatch_table, fld).

Definition at line 292 of file targets.cpp.

3.34.2.2 TargetTable::~TargetTable ()

TargetTable Destructor.

Deletes all of the target objects in the table.

Definition at line 424 of file targets.cpp.

3.34.3 Member Function Documentation

3.34.3.1

void TargetTable::asynch_bias_update (boost::mutex * mutex)

A member function to be run asynchronously that continuously updates the background
bias values, target bias values, and target effective lengths.

Parameters

mutex

a pointer to the mutex to be used to protect the global fld and bias tables
during updates.

Definition at line 843 of file targets.cpp.

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

108 Class Documentation

3.34.3.2 size_t TargetTable::covar_size()const [inline]
An accessor for number of pairs of targets with non-zero covariance.

Returns

The number of target pairs with non-zero covariance.

Definition at line 652 of file targets.h.

3.34.3.3 double TargetTable::get_covar (TargID tfarg1, TargID farg2) [inline]

An accessor for the covariance between two targets.

These returned value will be the log of the negative of the true value.

Parameters

targl | one of the targets in the pair.

targ?2 | the other target in the pair.

Returns

The negative of the pair’s covariance (logged).
Definition at line 645 of file targets.h.

3.34.3.4 Target « TargetTable::get targ (TargID id)

A member function that returns a pointer to the target with the given id.

Parameters

\ id | of the target queried.

Returns

A pointer to the target with the given id.
Definition at line 462 of file targets.cpp.
3.34.3.5 Bundle * TargetTable::merge_bundles (Bundle x b7, Bundle x b2)

A member function that merges the given Bundles.

Parameters

b1 | a pointer to the first Bundle to merge.

b2 | a pointer to the second Bundle to merge.

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

3.34 TargetTable Class Reference 109

Returns

A pointer to the merged Bundle.

Definition at line 466 of file targets.cpp.

3.34.3.6 size_t TargetTable::num_bundles()const [inline]
An accessor for the number of bundles in the partition.

Returns

The number of bundles in the partition.

Definition at line 664 of file targets.h.

3.34.3.7 void TargetTable::output_results (std::string output_dir, size_t tot counts, bool
output varcov = false, bool output_rdds = false)

A member function that outputs the final expression data in a file called 'results.xprs’,
(optionally) the variance-covariance matrix in ’varcov.xprs’, and (optionally) the RDD

p-values in the given output directory.

Parameters

output_dir | the directory to output the expression file to.

tot_counts | the total number of observed mapped fragments.

output_- | boolean specifying whether to also output the variance-covariance matrix
varcov

output_rdds | boolean specifying whether to also output the RDD p-values.

Definition at line 588 of file targets.cpp.

3.34.3.8 size_t TargetTable::size()const [inline]

An accessor for the number of targets in the table.

Returns

The number of targets in the table.

Definition at line 614 of file targets.h.

3.34.3.9 double TargetTable::total_fpb () const

An accessor for the (logged) total mass per base, including pseudo-counts.

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

110 Class Documentation

Returns

The (logged) total mass per base, including pseudo-counts.

Definition at line 833 of file targets.cpp.

3.34.3.10 void TargetTable::update_covar (TargID farg1, TargID targ2, double covar)
[inline]

A member function that increases the (logged) covariance between two targets by the
specified amount.

These values are stored positive even though they are negative.

Parameters

targl | one of the targets in the pair

targ?2 | the other target in the pair

covar | a double specifying the amount to increase the pair’s covariance by (logged)

Definition at line 635 of file targets.h.

3.34.3.11 void TargetTable::update_total_fpb (double incr.amt)
a member function that increments the (logged) total mass per base.

Parameters

incr_amt | the (logged) amount to increment by.

Definition at line 838 of file targets.cpp.

The documentation for this class was generated from the following files:
* src/targets.h

* src/targets.cpp

3.35 ThreadSafeFragQueue Class Reference

The ThreadSafeFragQueue is a threadsafe queue of Fragment pointers.

#include <threadsafety.h>

Public Member Functions

* ThreadSafeFragQueue (size_t max_size)

ThreadSafeFragQueue Constructor.

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

3.35 ThreadSafeFragQueue Class Reference 111

* Fragment * pop (bool block=true)

A member function that pops the next Fragment pointer off the queue.

¢ void push (Fragment *frag)

A member function that pushes the given Fragment pointer onto the queue.

* bool is_empty (bool block=false)

A member function that returns true iff the queue is empty.

3.35.1 Detailed Description
The ThreadSafeFragQueue is a threadsafe queue of Fragment pointers.

Author
Adam Roberts

Date
2012 Artistic License 2.0

Definition at line 23 of file threadsafety.h.

3.35.2 Constructor & Destructor Documentation
3.35.2.1 ThreadSafeFragQueue::ThreadSafeFragQueue (size_t max_size)
ThreadSafeFragQueue Constructor.

Parameters

‘ max_size ‘ a size_t representing the number of Fragments allowed in

the queue before blocking on a push.

Definition at line 12 of file threadsafety.cpp.

3.35.3 Member Function Documentation
3.35.3.1 bool ThreadSafeFragQueue::is_empty (bool block=false)

A member function that returns true iff the queue is empty.

If block is true, the function blocks until the queue is empty and returns true.

Parameters

is empty.

block | a bool specifying whether or not the function should block until the queue

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

112 Class Documentation

Returns

True iff the queue is empty.

Definition at line 41 of file threadsafety.cpp.

3.35.3.2 Fragment x ThreadSafeFragQueue::pop (bool block =t rue)

A member function that pops the next Fragment pointer off the queue.

If the queue is empty, returns NULL if block is false, otherwise blocks until one is
available.

Parameters

block | a bool specifying whether or not the function should block if the queue is
empty.

Returns

The next Fragment pointer on the queue or NULL if the queue is empty and block
is false.

Definition at line 16 of file threadsafety.cpp.

3.35.3.3 void ThreadSafeFragQueue::push (Fragment x frag)

A member function that pushes the given Fragment pointer onto the queue.

Blocks if the queue is full.

Parameters

\ frag | the Fragment pointer to push onto the queue.

Definition at line 31 of file threadsafety.cpp.

The documentation for this class was generated from the following files:

* src/threadsafety.h
* src/threadsafety.cpp

3.36 Writer Class Reference

The Writer class is an abstract class for implementing a SAMWriter or BAMWriter.
#include <mapparser.h>

Inheritance diagram for Writer:

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

3.36 Writer Class Reference 113

\ BAMWriter| | SAMWriter \

Public Member Functions

e virtual ~Writer ()

Dummy destructor:

e virtual void write_fragment (Fragment &f)=0

A member function that writes all mappings of the fragment to the ouptut file along
with their posterior probabilities in the "XP" field.

Protected Attributes

* bool _sample

A private bool that specifies if a single alignment should be sampled (true) or all
output with their respective posterior probabilities (false).

3.36.1 Detailed Description
The Writer class is an abstract class for implementing a SAMWriter or BAMWriter. It
writes Fragment objects back to file (in SAM/BAM format) with per-mapping proba-

bilistic assignments, or by sampling a single mapping based on assignment probabili-
ties.

Author
Adam Roberts

Date
2011 Artistic License 2.0

Definition at line 99 of file mapparser.h.

3.36.2 Member Function Documentation
3.36.2.1 virtual void Writer::write_fragment (Fragment & f) [pure virtual]

A member function that writes all mappings of the fragment to the ouptut file along
with their posterior probabilities in the "XP" field.

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

114 Class Documentation

Parameters

‘ f ‘ the processed Fragment to output.

Implemented in BAMWriter, and SAMWriter.

The documentation for this class was generated from the following file:

* src/mapparser.h

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

Index

~BundleTable
BundleTable, 17

~TargetTable
TargetTable, 107

activate

MismatchTable, 58
add_fragment

DirectionDetector, 21
add_hit

Target, 98
add_map_end

Fragment, 30
add_val

LengthDistribution, 42
align_likelihood

Target, 98
alpha

Target, 99
append_output

BiasBoss, 11

LengthDistribution, 42

MismatchTable, 58

SeqWeightTable, 93
argmax

FrequencyMatrix, 35
asynch_bias_update

TargetTable, 107

bam
ReadHit, 65
BAMParser, 5
BAMParser, 6
header, 6
next_fragment, 6
BAMWriter, 7
BAMWriter, 8
write_fragment, 8
bias_table
Library, 48
BiasBoss, 9

append_output, 11
BiasBoss, 10
copy_expectations, 11
copy_observations, 11
get_target_bias, 11
order, 11
update_expectations, 12
update_observed, 12
Bundle, 12
Bundle, 14
counts, 14
get_rep, 14
incr_counts, 14
incr_mass, 15

mass, 15

reset_mass, 15

size, 15

targets, 15
bundle

Target, 99
bundles

BundleTable, 17
BundleTable, 16
~BundleTable, 17
bundles, 17
create_bundle, 17
merge, 18
size, 18
threadsafe_mode, 18

cached_effective_length
Target, 99
calc_p_vals
Sequence, 75
SequenceFwd, 81
SequenceRev, 87
cmf

LengthDistribution, 42, 43

copy_expectations
BiasBoss, 11
copy_expected

116

INDEX

SeqWeightTable, 93
copy_observations

BiasBoss, 11
copy_observed

SeqWeightTable, 93
counts

Bundle, 14
covar_size

TargetTable, 107
CovarTable, 19

get, 20

increment, 20

size, 20
create_bundle

BundleTable, 17
curr_lib

Librarian, 46

deletes
ReadHit, 65
DirectionDetector, 21
add_fragment, 21

report_if_improper_direction, 22

empty
Sequence, 75
SequenceFwd, 81
SequenceRev, 87
est_effective_length
Target, 99

fast_learn
MarkovModel, 53
first_read
FragHit, 24, 25
fix
FrequencyMatrix, 35
MismatchTable, 58
frag_name
FragHit, 25
FragHit, 22
first_read, 24, 25
frag_name, 25
FragHit, 24
left, 25
left_read, 25
length, 26
neighbors, 26
pair_status, 26
params, 27

right, 27
right_read, 27
second_read, 28
target, 28
target_id, 29
Fragment, 29
add_map_end, 30
hits, 31
lib, 31
mass, 31
name, 31
num_hits, 32
paired, 32
sample_hit, 32
FrequencyMatrix, 33
argmax, 35
fix, 35
FrequencyMatrix, 34
increment, 35
operator(), 36
set_logged, 36
sum, 37

get

CovarTable, 20
get_covar

TargetTable, 108
get_exp

Sequence, 75

SequenceFwd, 81

SequenceRev, 87
get_indices

MarkovModel, 54

MismatchTable, 58
get_obs

Sequence, 75

SequenceFwd, 82

SequenceRev, 88
get_prob

Sequence, 76

SequenceFwd, 82

SequenceRev, 88
get_ref

Sequence, 76

SequenceFwd, 82

SequenceRev, 88
get_rep

Bundle, 14
get_targ

TargetTable, 108

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

INDEX 117

get_target_bias LengthDistribution, 40
BiasBoss, 11 add_val, 42
get_weight append_output, 42
SeqWeightTable, 94 cmf, 42, 43
LengthDistribution, 41
haplotype max_val, 43
Target, 100 mean, 43
HaplotypeHandler, 37 min_val, 43
HaplotypeHandler, 38 pmf, 43
header to_string, 44
BAMParser, 6 tot_mass, 44
Parser, 61 lib
SAMParser, 71 Fragment, 31
HitParams, 38 Librarian, 44
hits curr_lib, 46
Fragment, 31 Librarian, 45
set_curr, 46
id size, 46
Target, 100 Library, 47
in_file_name bias_table, 48
Library, 48 in_file_name, 48
incr_counts out_file_name, 48
Bundle, 14 lock
Target, 100 Target, 101
incr_mass log_likelihood
Bundle, 15 MismatchTable, 59
increment Logger, 48
CovarTable, 20
FrequencyMatrix, 35 MapParser, 49
increment_expected MapParser, 50
SeqWeightTable, 94 targ_index, 50
increment_observed targ_lengths, 50
SeqWeightTable, 94 threaded_parse, 51
Indel, 39 write_active, 51
pos, 40 marginal_prob
inserts MarkovModel, 54
ReadHit, 65 MarkovModel, 52
is_empty fast_learn, 53
ThreadSafeFragQueue, 111 get_indices, 54
marginal_prob, 54
left MarkovModel, 53
FragHit, 25 seq_prob, 55
left_read transition_prob, 55
FragHit, 25 update, 55, 56
length mass
FragHit, 26 Bundle, 15
Sequence, 76 Fragment, 31
SequenceFwd, 83 Target, 101
SequenceRev, 89 mass_var
Target, 101 Target, 101

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

118

mate_1
ReadHit, 65
max_val
LengthDistribution, 43
mean
LengthDistribution, 43
merge
BundleTable, 18
merge_bundles
TargetTable, 108
min_val
LengthDistribution, 43
MismatchTable, 56
activate, 58
append_output, 58
fix, 58
get_indices, 58
log_likelihood, 59
MismatchTable, 57, 58
update, 59

name
Fragment, 31
Target, 101
neighbors
FragHit, 26
next_fragment
BAMParser, 6
Parser, 61
SAMParser, 71
num_bundles
TargetTable, 109
num_hits
Fragment, 32

operator()

FrequencyMatrix, 36
operator=

SequenceFwd, 83
order

BiasBoss, 11
out_file_name

Library, 48
output_results

TargetTable, 109

pair_status
FragHit, 26
paired
Fragment, 32

INDEX
params
FragHit, 27
Parser, 60
header, 61

next_fragment, 61
targ_index, 62
targ_lengths, 62
ParseThreadSafety, 62
ParseThreadSafety, 63
pmf
LengthDistribution, 43
pop
ThreadSafeFragQueue, 112
pos
Indel, 40
prob
Sequence, 77
SequenceFwd, 83
SequenceRev, 89
push
ThreadSafeFragQueue, 112

ReadHit, 64

bam, 65

deletes, 65

inserts, 65

mate_l, 65

reversed, 65

sam, 66
report_if_improper_direction

DirectionDetector, 22

reset_mass

Bundle, 15
Result, 66
reversed

ReadHit, 65
rho

Target, 102
right

FragHit, 27
right_read

FragHit, 27

RobertsFilter, 67
RobertsFilter, 67
test_and_push, 68

RoundParams, 68

sam
ReadHit, 66
SAMParser, 69

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

INDEX 119
header, 71 get_ref, 88
next_fragment, 71 length, 89
SAMParser, 70 prob, 89

sample_hit set, 90

Fragment, 32
sample_likelihood
Target, 102
SAMWriter, 71
SAMWriter, 72
write_fragment, 72
second_read

FragHit, 28
seq

Target, 102
seq_prob

MarkovModel, 55
Sequence, 73
calc_p_vals, 75
empty, 75
get_exp, 75
get_obs, 75
get_prob, 76
get_ref, 76
length, 76
prob, 77
set, 77
update_est, 77
update_exp, 78
update_obs, 78
SequenceFwd, 78
calc_p_vals, 81
empty, 81
get_exp, 81
get_obs, 82
get_prob, 82
get_ref, 82
length, 83
operator=, 83
prob, 83

SequenceFwd, 80, 81

set, 84
update_est, 84
update_exp, 84
update_obs, 85
SequenceRev, 85
calc_p_vals, 87
empty, 87
get_exp, 87
get_obs, 88
get_prob, 88

update_est, 90
update_exp, 90
update_obs, 90

SeqWeightTable, 91

set

append_output, 93
copy_expected, 93
copy_observed, 93
get_weight, 94
increment_expected, 94
increment_observed, 94
SeqWeightTable, 92, 93

Sequence, 77
SequenceFwd, 84
SequenceRev, 90

set_curr

Librarian, 46

set_logged

size

FrequencyMatrix, 36

Bundle, 15
BundleTable, 18
CovarTable, 20
Librarian, 46
TargetTable, 109

solvable

sum

Target, 103

FrequencyMatrix, 37

swap_bias_parameters

Target, 103

targ_index

MapParser, 50
Parser, 62

targ_lengths

MapParser, 50
Parser, 62

Target, 95

add_hit, 98
align_likelihood, 98
alpha, 99

bundle, 99

cached_effective_length, 99

est_effective_length, 99
haplotype, 100

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

120 INDEX
id, 100 LengthDistribution, 44
incr_counts, 100 tot_ambig_mass
length, 101 Target, 103
lock, 101 tot_counts
mass, 101 Target, 104
mass_var, 101 tot_mass
name, 101 LengthDistribution, 44
rho, 102 total_fpb
sample_likelihood, 102 TargetTable, 109
seq, 102 transition_prob

solvable, 103
swap_bias_parameters, 103
Target, 98
tot_ambig_mass, 103
tot_counts, 104
uniq_counts, 104
update_target_bias_buffer, 104
var_sum, 104
target
FragHit, 28
target_id
FragHit, 29
targets
Bundle, 15
TargetTable, 105
~TargetTable, 107
asynch_bias_update, 107
covar_size, 107
get_covar, 108
get_targ, 108
merge_bundles, 108
num_bundles, 109
output_results, 109
size, 109
TargetTable, 107
total_fpb, 109
update_covar, 110
update_total_fpb, 110
test_and_push
RobertsFilter, 68
threaded_parse
MapParser, 51
threadsafe_mode
BundleTable, 18
ThreadSafeFragQueue, 110
is_empty, 111
pop, 112
push, 112
ThreadSafeFragQueue, 111
to_string

MarkovModel, 55

uniq_counts
Target, 104
update
MarkovModel, 55, 56
MismatchTable, 59
update_covar
TargetTable, 110
update_est
Sequence, 77
SequenceFwd, 84
SequenceRev, 90
update_exp
Sequence, 78
SequenceFwd, 84
SequenceRev, 90
update_expectations
BiasBoss, 12
update_obs
Sequence, 78
SequenceFwd, 85
SequenceRev, 90
update_observed
BiasBoss, 12
update_target_bias_buffer
Target, 104
update_total_fpb
TargetTable, 110

var_sum
Target, 104

write_active
MapParser, 51

write_fragment
BAMWriter, 8
SAMWriter, 72
Writer, 113

Writer, 112
write_fragment, 113

Generated on Sun Dec 8 2013 11:09:13 for eXpress by Doxygen

	Class Index
	Class Hierarchy

	Class Index
	Class List

	Class Documentation
	BAMParser Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	BAMParser

	Member Function Documentation
	header
	next_fragment

	BAMWriter Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	BAMWriter

	Member Function Documentation
	write_fragment

	BiasBoss Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	BiasBoss
	BiasBoss

	Member Function Documentation
	append_output
	copy_expectations
	copy_observations
	get_target_bias
	order
	update_expectations
	update_observed

	Bundle Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Bundle

	Member Function Documentation
	counts
	get_rep
	incr_counts
	incr_mass
	mass
	reset_mass
	size
	targets

	BundleTable Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	BundleTable

	Member Function Documentation
	bundles
	create_bundle
	merge
	size
	threadsafe_mode
	threadsafe_mode

	CovarTable Class Reference
	Detailed Description
	Member Function Documentation
	get
	increment
	size

	DirectionDetector Class Reference
	Detailed Description
	Member Function Documentation
	add_fragment
	report_if_improper_direction

	FragHit Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	FragHit
	FragHit

	Member Function Documentation
	first_read
	first_read
	frag_name
	left
	left_read
	left_read
	length
	neighbors
	neighbors
	pair_status
	params
	params
	right
	right_read
	right_read
	second_read
	second_read
	target
	target
	target_id

	Fragment Class Reference
	Detailed Description
	Member Function Documentation
	add_map_end
	hits
	lib
	mass
	mass
	name
	num_hits
	operator[]
	paired
	sample_hit

	FrequencyMatrix< T > Class Template Reference
	Detailed Description
	Constructor & Destructor Documentation
	FrequencyMatrix

	Member Function Documentation
	argmax
	fix
	increment
	increment
	operator()
	operator()
	set_logged
	sum

	HaplotypeHandler Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	HaplotypeHandler

	HitParams Struct Reference
	Detailed Description

	Indel Struct Reference
	Detailed Description
	Member Data Documentation
	pos

	LengthDistribution Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	LengthDistribution
	LengthDistribution

	Member Function Documentation
	add_val
	append_output
	cmf
	cmf
	max_val
	mean
	min_val
	pmf
	to_string
	tot_mass

	Librarian Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Librarian

	Member Function Documentation
	curr_lib
	operator[]
	set_curr
	size

	Library Struct Reference
	Detailed Description
	Member Data Documentation
	bias_table
	in_file_name
	out_file_name

	Logger Class Reference
	Detailed Description

	MapParser Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	MapParser

	Member Function Documentation
	targ_index
	targ_lengths
	threaded_parse
	write_active

	MarkovModel Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	MarkovModel

	Member Function Documentation
	fast_learn
	get_indices
	get_indices
	marginal_prob
	seq_prob
	transition_prob
	update
	update

	MismatchTable Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	MismatchTable
	MismatchTable

	Member Function Documentation
	activate
	append_output
	fix
	get_indices
	log_likelihood
	update

	Parser Class Reference
	Detailed Description
	Member Function Documentation
	header
	next_fragment
	targ_index
	targ_lengths

	ParseThreadSafety Struct Reference
	Detailed Description
	Constructor & Destructor Documentation
	ParseThreadSafety

	ReadHit Struct Reference
	Detailed Description
	Member Data Documentation
	bam
	deletes
	inserts
	mate_l
	reversed
	sam

	Result Struct Reference
	Detailed Description

	RobertsFilter Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	RobertsFilter

	Member Function Documentation
	test_and_push

	RoundParams Struct Reference
	Detailed Description

	SAMParser Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	SAMParser

	Member Function Documentation
	header
	next_fragment

	SAMWriter Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	SAMWriter

	Member Function Documentation
	write_fragment

	Sequence Class Reference
	Detailed Description
	Member Function Documentation
	calc_p_vals
	empty
	get_exp
	get_obs
	get_prob
	get_ref
	length
	operator[]
	prob
	set
	update_est
	update_exp
	update_obs

	SequenceFwd Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	SequenceFwd
	SequenceFwd

	Member Function Documentation
	calc_p_vals
	empty
	get_exp
	get_obs
	get_prob
	get_ref
	length
	operator=
	operator[]
	prob
	set
	update_est
	update_exp
	update_obs

	SequenceRev Class Reference
	Detailed Description
	Member Function Documentation
	calc_p_vals
	empty
	get_exp
	get_obs
	get_prob
	get_ref
	length
	operator[]
	prob
	set
	update_est
	update_exp
	update_obs

	SeqWeightTable Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	SeqWeightTable
	SeqWeightTable

	Member Function Documentation
	append_output
	copy_expected
	copy_observed
	get_weight
	increment_expected
	increment_observed

	Target Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Target

	Member Function Documentation
	add_hit
	align_likelihood
	alpha
	bundle
	bundle
	cached_effective_length
	est_effective_length
	haplotype
	id
	incr_counts
	length
	lock
	mass
	mass_var
	name
	rho
	sample_likelihood
	seq
	seq
	solvable
	solvable
	swap_bias_parameters
	tot_ambig_mass
	tot_counts
	uniq_counts
	update_target_bias_buffer
	var_sum

	TargetTable Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	TargetTable
	TargetTable

	Member Function Documentation
	asynch_bias_update
	covar_size
	get_covar
	get_targ
	merge_bundles
	num_bundles
	output_results
	size
	total_fpb
	update_covar
	update_total_fpb

	ThreadSafeFragQueue Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	ThreadSafeFragQueue

	Member Function Documentation
	is_empty
	pop
	push

	Writer Class Reference
	Detailed Description
	Member Function Documentation
	write_fragment

