OpenVDB  2.3.0
Classes | Namespaces | Typedefs | Functions
Vec2.h File Reference
#include <cmath>
#include <openvdb/Exceptions.h>
#include "Math.h"
#include "Tuple.h"

Go to the source code of this file.

Classes

class  Mat2< T >
 
class  Vec2< T >
 

Namespaces

 openvdb
 
 openvdb::v2_3_0
 
 openvdb::v2_3_0::math
 

Typedefs

typedef Vec2< int32_t > Vec2i
 
typedef Vec2< uint32_t > Vec2ui
 
typedef Vec2< float > Vec2s
 
typedef Vec2< double > Vec2d
 

Functions

template<typename S , typename T >
Vec2< typename promote< S, T >
::type > 
operator* (S scalar, const Vec2< T > &v)
 Returns V, where $V_i = v_i * scalar$ for $i \in [0, 1]$. More...
 
template<typename S , typename T >
Vec2< typename promote< S, T >
::type > 
operator* (const Vec2< T > &v, S scalar)
 Returns V, where $V_i = v_i * scalar$ for $i \in [0, 1]$. More...
 
template<typename T0 , typename T1 >
Vec2< typename promote< T0, T1 >
::type > 
operator* (const Vec2< T0 > &v0, const Vec2< T1 > &v1)
 Returns V, where $V_i = v0_i * v1_i$ for $i \in [0, 1]$. More...
 
template<typename S , typename T >
Vec2< typename promote< S, T >
::type > 
operator/ (S scalar, const Vec2< T > &v)
 Returns V, where $V_i = scalar / v_i$ for $i \in [0, 1]$. More...
 
template<typename S , typename T >
Vec2< typename promote< S, T >
::type > 
operator/ (const Vec2< T > &v, S scalar)
 Returns V, where $V_i = v_i / scalar$ for $i \in [0, 1]$. More...
 
template<typename T0 , typename T1 >
Vec2< typename promote< T0, T1 >
::type > 
operator/ (const Vec2< T0 > &v0, const Vec2< T1 > &v1)
 Returns V, where $V_i = v0_i / v1_i$ for $i \in [0, 1]$. More...
 
template<typename T0 , typename T1 >
Vec2< typename promote< T0, T1 >
::type > 
operator+ (const Vec2< T0 > &v0, const Vec2< T1 > &v1)
 Returns V, where $V_i = v0_i + v1_i$ for $i \in [0, 1]$. More...
 
template<typename S , typename T >
Vec2< typename promote< S, T >
::type > 
operator+ (const Vec2< T > &v, S scalar)
 Returns V, where $V_i = v_i + scalar$ for $i \in [0, 1]$. More...
 
template<typename T0 , typename T1 >
Vec2< typename promote< T0, T1 >
::type > 
operator- (const Vec2< T0 > &v0, const Vec2< T1 > &v1)
 Returns V, where $V_i = v0_i - v1_i$ for $i \in [0, 1]$. More...
 
template<typename S , typename T >
Vec2< typename promote< S, T >
::type > 
operator- (const Vec2< T > &v, S scalar)
 Returns V, where $V_i = v_i - scalar$ for $i \in [0, 1]$. More...
 
template<typename T >
angle (const Vec2< T > &v1, const Vec2< T > &v2)
 
template<typename T >
bool isApproxEqual (const Vec2< T > &a, const Vec2< T > &b)
 
template<typename T >
bool isApproxEqual (const Vec2< T > &a, const Vec2< T > &b, const Vec2< T > &eps)
 
template<typename T >
void orthonormalize (Vec2< T > &v1, Vec2< T > &v2)
 
template<typename T >
Vec2< T > minComponent (const Vec2< T > &v1, const Vec2< T > &v2)
 Return component-wise minimum of the two vectors. More...
 
template<typename T >
Vec2< T > maxComponent (const Vec2< T > &v1, const Vec2< T > &v2)
 Return component-wise maximum of the two vectors. More...
 
template<typename T >
Vec2< T > Exp (Vec2< T > v)
 Return a vector with the exponent applied to each of the components of the input vector. More...