The acoustic mass tensor for a given frequency.
Returns: | self : AcousticMassTensor instance
|
---|
Notes
eigenmomenta, eigs should contain only valid resonances.
The applied load tensor for a given frequency.
Returns: | self : AppliedLoadTensor instance
|
---|
Notes
eigenmomenta, ueigenmomenta, eigs should contain only valid resonances.
Band gaps detection.
Parameters: | eigensolver : str
eig_range : (int, int)
freq_margins : (float, float)
fixed_freq_range : (float, float)
freq_step : float
freq_eps : float
zero_eps : float
detect_fun : callable
log_save_name : str
|
---|
Determine densities of regions specified in region_to_material, and compute average density based on region volumes.
Eigenmomenta corresponding to eigenvectors.
Parameters: | var_name : str
threshold : float
threshold_is_relative : bool
transform : callable, optional
|
---|---|
Returns: | eigenmomenta : Struct
|
Compute phase velocity.
Compute polarization angles, i.e., angles between incident wave direction and wave vectors. Vector length does not matter - eigenvectors are used directly.
Schur complement eigenvalue problem.
Simple eigenvalue problem.
Christoffel acoustic tensor part of dielectric tensor dimension.
Christoffel acoustic tensor part of piezo-coupling tensor dimension.
Christoffel acoustic tensor (part) of elasticity tensor dimension.
Compute the eigenmomenta corresponding to given eigenvectors.
Cut off masked resonance frequencies. Margins are preserved, like no resonances were cut.
Returns: | freq_range : array
freq_range_margins : array
|
---|
Detect band gaps given solution to eigenproblem (eigs, eig_vectors). Only valid resonance frequencies (e.i. those for which corresponding eigenmomenta are above a given threshold) are taken into account.
Notes
For f in ]f0, f1[ find frequency f for which either the smallest (mode = 0) or the largest (mode = 1) eigenvalue of problem P given by callback is zero.
Returns: | flag : 0, 1, or 2
frequency : float
eigenvalue : float
|
---|
Notes
Meaning of the return value combinations:
mode | flag | meaning |
---|---|---|
0, 1 | 0 | eigenvalue -> 0 for f in ]f0, f1[ |
0 | 1 | f -> f1, smallest eigenvalue < 0 |
0 | 2 | f -> f0, smallest eigenvalue > 0 and -> -infty |
1 | 1 | f -> f1, largest eigenvalue < 0 and -> +infty |
1 | 2 | f -> f0, largest eigenvalue > 0 |
Return callback to solve band gaps or dispersion eigenproblem P.
Notes
Get logging frequencies.
The frequencies get denser towards the interval boundaries.