name/class | arguments | definition |
---|---|---|
dw_adj_convect1 |
<virtual>, <state>, <parameter> | \int_{\Omega} ((\ul{v} \cdot \nabla) \ul{u}) \cdot \ul{w} |
dw_adj_convect2 |
<virtual>, <state>, <parameter> | \int_{\Omega} ((\ul{u} \cdot \nabla) \ul{v}) \cdot \ul{w} |
dw_adj_div_grad |
<material_1>, <material_2>, <virtual>, <parameter> | w \delta_{u} \Psi(\ul{u}) \circ \ul{v} |
dw_bc_newton |
<material_1>, <material_2>, <virtual>, <state> | \int_{\Gamma} \alpha q (p - p_{\rm outer}) |
dw_biot |
<material>, <virtual>, <state> <material>, <state>, <virtual> <material>, <parameter_v>, <parameter_s> |
\int_{\Omega} p\ \alpha_{ij} e_{ij}(\ul{v}) \mbox{ , } \int_{\Omega} q\ \alpha_{ij} e_{ij}(\ul{u}) |
dw_biot_eth |
<ts>, <material_0>, <material_1>, <virtual>, <state> <ts>, <material_0>, <material_1>, <state>, <virtual> |
\begin{array}{l} \int_{\Omega} \left [\int_0^t \alpha_{ij}(t-\tau)\,p(\tau)) \difd{\tau} \right]\,e_{ij}(\ul{v}) \mbox{ ,} \\ \int_{\Omega} \left [\int_0^t \alpha_{ij}(t-\tau) e_{kl}(\ul{u}(\tau)) \difd{\tau} \right] q \end{array} |
ev_biot_stress |
<material>, <parameter> | - \int_{\Omega} \alpha_{ij} \bar{p} \mbox{vector for } K \from \Ical_h: - \int_{T_K} \alpha_{ij} \bar{p} / \int_{T_K} 1 - \alpha_{ij} \bar{p}|_{qp} |
dw_biot_th |
<ts>, <material>, <virtual>, <state> <ts>, <material>, <state>, <virtual> |
\begin{array}{l} \int_{\Omega} \left [\int_0^t \alpha_{ij}(t-\tau)\,p(\tau)) \difd{\tau} \right]\,e_{ij}(\ul{v}) \mbox{ ,} \\ \int_{\Omega} \left [\int_0^t \alpha_{ij}(t-\tau) e_{kl}(\ul{u}(\tau)) \difd{\tau} \right] q \end{array} |
ev_cauchy_strain |
<parameter> | \int_{\Omega} \ull{e}(\ul{w}) \mbox{vector for } K \from \Ical_h: \int_{T_K} \ull{e}(\ul{w}) / \int_{T_K} 1 \ull{e}(\ul{w})|_{qp} |
ev_cauchy_strain_s |
<parameter> | \int_{\Gamma} \ull{e}(\ul{w}) \mbox{vector for } K \from \Ical_h: \int_{T_K} \ull{e}(\ul{w}) / \int_{T_K} 1 \ull{e}(\ul{w})|_{qp} |
ev_cauchy_stress |
<material>, <parameter> | \int_{\Omega} D_{ijkl} e_{kl}(\ul{w}) \mbox{vector for } K \from \Ical_h: \int_{T_K} D_{ijkl} e_{kl}(\ul{w}) / \int_{T_K} 1 D_{ijkl} e_{kl}(\ul{w})|_{qp} |
ev_cauchy_stress_eth |
<ts>, <material_0>, <material_1>, <parameter> | \int_{\Omega} \int_0^t \Hcal_{ijkl}(t-\tau)\,e_{kl}(\ul{w}(\tau)) \difd{\tau} \mbox{vector for } K \from \Ical_h: \int_{T_K} \int_0^t \Hcal_{ijkl}(t-\tau)\,e_{kl}(\ul{w}(\tau)) \difd{\tau} / \int_{T_K} 1 \int_0^t \Hcal_{ijkl}(t-\tau)\,e_{kl}(\ul{w}(\tau)) \difd{\tau}|_{qp} |
ev_cauchy_stress_th |
<ts>, <material>, <parameter> | \int_{\Omega} \int_0^t \Hcal_{ijkl}(t-\tau)\,e_{kl}(\ul{w}(\tau)) \difd{\tau} \mbox{vector for } K \from \Ical_h: \int_{T_K} \int_0^t \Hcal_{ijkl}(t-\tau)\,e_{kl}(\ul{w}(\tau)) \difd{\tau} / \int_{T_K} 1 \int_0^t \Hcal_{ijkl}(t-\tau)\,e_{kl}(\ul{w}(\tau)) \difd{\tau}|_{qp} |
dw_contact_plane |
<material_f>, <material_n>, <material_a>, <material_b>, <virtual>, <state> | \int_{\Gamma} \ul{v} \cdot f(d(\ul{u})) \ul{n} |
dw_contact_sphere |
<material_f>, <material_c>, <material_r>, <virtual>, <state> | \int_{\Gamma} \ul{v} \cdot f(d(\ul{u})) \ul{n}(\ul{u}) |
dw_convect |
<virtual>, <state> | \int_{\Omega} ((\ul{u} \cdot \nabla) \ul{u}) \cdot \ul{v} |
dw_convect_v_grad_s |
<virtual>, <state_v>, <state_s> | \int_{\Omega} q (\ul{u} \cdot \nabla p) |
ev_def_grad |
<parameter> | \ull{F} = \pdiff{\ul{x}}{\ul{X}}|_{qp} = \ull{I} + \pdiff{\ul{u}}{\ul{X}}|_{qp} \;, \\ \ul{x} = \ul{X} + \ul{u} \;, J = \det{(\ull{F})} |
dw_diffusion |
<material>, <virtual>, <state> <material>, <parameter_1>, <parameter_2> |
\int_{\Omega} K_{ij} \nabla_i q \nabla_j p \mbox{ , } \int_{\Omega} K_{ij} \nabla_i \bar{p} \nabla_j r |
dw_diffusion_coupling |
<material>, <virtual>, <state> <material>, <state>, <virtual> <material>, <parameter_1>, <parameter_2> |
\int_{\Omega} p K_{j} \nabla_j q |
dw_diffusion_r |
<material>, <virtual> | \int_{\Omega} K_{j} \nabla_j q |
d_diffusion_sa |
<material>, <parameter_q>, <parameter_p>, <parameter_v> | \int_{\Omega} \left[ (\dvg \ul{\Vcal}) K_{ij} \nabla_i q\, \nabla_j p - K_{ij} (\nabla_j \ul{\Vcal} \nabla q) \nabla_i p - K_{ij} \nabla_j q (\nabla_i \ul{\Vcal} \nabla p)\right] |
ev_diffusion_velocity |
<material>, <parameter> | - \int_{\Omega} K_{ij} \nabla_j \bar{p} \mbox{vector for } K \from \Ical_h: - \int_{T_K} K_{ij} \nabla_j \bar{p} / \int_{T_K} 1 - K_{ij} \nabla_j \bar{p} |
ev_div |
<parameter> | \int_{\Omega} \nabla \cdot \ul{u} \mbox{vector for } K \from \Ical_h: \int_{T_K} \nabla \cdot \ul{u} / \int_{T_K} 1 (\nabla \cdot \ul{u})|_{qp} |
dw_div |
<opt_material>, <virtual> | \int_{\Omega} \nabla \cdot \ul{v} \mbox { or } \int_{\Omega} c \nabla \cdot \ul{v} |
dw_div_grad |
<opt_material>, <virtual>, <state> <opt_material>, <parameter_1>, <parameter_2> |
\int_{\Omega} \nu\ \nabla \ul{v} : \nabla \ul{u} \mbox{ , } \int_{\Omega} \nu\ \nabla \ul{u} : \nabla \ul{w} \\ \int_{\Omega} \nabla \ul{v} : \nabla \ul{u} \mbox{ , } \int_{\Omega} \nabla \ul{u} : \nabla \ul{w} |
dw_electric_source |
<material>, <virtual>, <parameter> | \int_{\Omega} c s (\nabla \phi)^2 |
ev_grad |
<parameter> | \int_{\Omega} \nabla p \mbox{ or } \int_{\Omega} \nabla \ul{w} \mbox{vector for } K \from \Ical_h: \int_{T_K} \nabla p / \int_{T_K} 1 \mbox{ or } \int_{T_K} \nabla \ul{w} / \int_{T_K} 1 (\nabla p)|_{qp} \mbox{ or } \nabla \ul{w}|_{qp} |
ev_integrate_mat |
<material>, <parameter> | \int_\Omega m \mbox{vector for } K \from \Ical_h: \int_{T_K} m / \int_{T_K} 1 m|_{qp} |
dw_jump |
<opt_material>, <virtual>, <state_1>, <state_2> | \int_{\Gamma} c\, q (p_1 - p_2) |
dw_laplace |
<opt_material>, <virtual>, <state> <opt_material>, <parameter_1>, <parameter_2> |
\int_{\Omega} c \nabla q \cdot \nabla p \mbox{ , } \int_{\Omega} c \nabla \bar{p} \cdot \nabla r |
dw_lin_convect |
<virtual>, <parameter>, <state> | \int_{\Omega} ((\ul{b} \cdot \nabla) \ul{u}) \cdot \ul{v} ((\ul{b} \cdot \nabla) \ul{u})|_{qp} |
dw_lin_elastic |
<material>, <virtual>, <state> <material>, <parameter_1>, <parameter_2> |
\int_{\Omega} D_{ijkl}\ e_{ij}(\ul{v}) e_{kl}(\ul{u}) |
dw_lin_elastic_eth |
<ts>, <material_0>, <material_1>, <virtual>, <state> | \int_{\Omega} \left [\int_0^t \Hcal_{ijkl}(t-\tau)\,e_{kl}(\ul{u}(\tau)) \difd{\tau} \right]\,e_{ij}(\ul{v}) |
dw_lin_elastic_iso |
<material_1>, <material_2>, <virtual>, <state> | \int_{\Omega} D_{ijkl}\ e_{ij}(\ul{v}) e_{kl}(\ul{u}) \mbox{ with } D_{ijkl} = \mu (\delta_{ik} \delta_{jl}+\delta_{il} \delta_{jk}) + \lambda \ \delta_{ij} \delta_{kl} |
dw_lin_elastic_th |
<ts>, <material>, <virtual>, <state> | \int_{\Omega} \left [\int_0^t \Hcal_{ijkl}(t-\tau)\,e_{kl}(\ul{u}(\tau)) \difd{\tau} \right]\,e_{ij}(\ul{v}) |
dw_lin_prestress |
<material>, <virtual> <material>, <parameter> |
\int_{\Omega} \sigma_{ij} e_{ij}(\ul{v}) |
dw_lin_strain_fib |
<material_1>, <material_2>, <virtual> | \int_{\Omega} D_{ijkl} e_{ij}(\ul{v}) \left(d_k d_l\right) |
dw_new_diffusion |
<material>, <virtual>, <state> | |
dw_new_lin_elastic |
<material>, <virtual>, <state> | |
dw_new_mass |
<virtual>, <state> | |
dw_new_mass_scalar |
<virtual>, <state> | |
dw_non_penetration |
<opt_material>, <virtual>, <state> <opt_material>, <state>, <virtual> |
\int_{\Gamma} c \lambda \ul{n} \cdot \ul{v} \mbox{ , } \int_{\Gamma} c \hat\lambda \ul{n} \cdot \ul{u} \\ \int_{\Gamma} \lambda \ul{n} \cdot \ul{v} \mbox{ , } \int_{\Gamma} \hat\lambda \ul{n} \cdot \ul{u} |
d_of_ns_surf_min_d_press |
<material_1>, <material_2>, <parameter> | \delta \Psi(p) = \delta \left( \int_{\Gamma_{in}}p - \int_{\Gamma_{out}}bpress \right) |
dw_of_ns_surf_min_d_press_diff |
<material>, <virtual> | w \delta_{p} \Psi(p) \circ q |
dw_piezo_coupling |
<material>, <virtual>, <state> <material>, <state>, <virtual> <material>, <parameter_v>, <parameter_s> |
\int_{\Omega} g_{kij}\ e_{ij}(\ul{v}) \nabla_k p \mbox{ , } \int_{\Omega} g_{kij}\ e_{ij}(\ul{u}) \nabla_k q |
dw_point_load |
<material>, <virtual> | \ul{f}^i = \ul{\bar f}^i \quad \forall \mbox{ FE node } i \mbox{ in a region } |
dw_point_lspring |
<material>, <virtual>, <state> | \ul{f}^i = -k \ul{u}^i \quad \forall \mbox{ FE node } i \mbox{ in a region } |
dw_s_dot_grad_i_s |
<material>, <virtual>, <state> | Z^i = \int_{\Omega} q \nabla_i p |
d_sd_convect |
<parameter_u>, <parameter_w>, <parameter_mesh_velocity> | \int_{\Omega_D} [ u_k \pdiff{u_i}{x_k} w_i (\nabla \cdot \Vcal) - u_k \pdiff{\Vcal_j}{x_k} \pdiff{u_i}{x_j} w_i ] |
d_sd_div |
<parameter_u>, <parameter_p>, <parameter_mesh_velocity> | \int_{\Omega_D} p [ (\nabla \cdot \ul{w}) (\nabla \cdot \ul{\Vcal}) - \pdiff{\Vcal_k}{x_i} \pdiff{w_i}{x_k} ] |
d_sd_div_grad |
<material_1>, <material_2>, <parameter_u>, <parameter_w>, <parameter_mesh_velocity> | w \nu \int_{\Omega_D} [ \pdiff{u_i}{x_k} \pdiff{w_i}{x_k} (\nabla \cdot \ul{\Vcal}) - \pdiff{\Vcal_j}{x_k} \pdiff{u_i}{x_j} \pdiff{w_i}{x_k} - \pdiff{u_i}{x_k} \pdiff{\Vcal_l}{x_k} \pdiff{w_i}{x_k} ] |
d_sd_lin_elastic |
<material>, <parameter_w>, <parameter_u>, <parameter_mesh_velocity> | \int_{\Omega} \hat{D}_{ijkl}\ e_{ij}(\ul{v}) e_{kl}(\ul{u}) \hat{D}_{ijkl} = D_{ijkl}(\nabla \cdot \ul{\Vcal}) - D_{ijkq}{\partial \Vcal_l \over \partial x_q} - D_{iqkl}{\partial \Vcal_j \over \partial x_q} |
d_sd_st_grad_div |
<material>, <parameter_u>, <parameter_w>, <parameter_mesh_velocity> | \gamma \int_{\Omega_D} [ (\nabla \cdot \ul{u}) (\nabla \cdot \ul{w}) (\nabla \cdot \ul{\Vcal}) - \pdiff{u_i}{x_k} \pdiff{\Vcal_k}{x_i} (\nabla \cdot \ul{w}) - (\nabla \cdot \ul{u}) \pdiff{w_i}{x_k} \pdiff{\Vcal_k}{x_i} ] |
d_sd_st_pspg_c |
<material>, <parameter_b>, <parameter_u>, <parameter_r>, <parameter_mesh_velocity> | \sum_{K \in \Ical_h}\int_{T_K} \delta_K\ [ \pdiff{r}{x_i} (\ul{b} \cdot \nabla u_i) (\nabla \cdot \Vcal) - \pdiff{r}{x_k} \pdiff{\Vcal_k}{x_i} (\ul{b} \cdot \nabla u_i) - \pdiff{r}{x_k} (\ul{b} \cdot \nabla \Vcal_k) \pdiff{u_i}{x_k} ] |
d_sd_st_pspg_p |
<material>, <parameter_r>, <parameter_p>, <parameter_mesh_velocity> | \sum_{K \in \Ical_h}\int_{T_K} \tau_K\ [ (\nabla r \cdot \nabla p) (\nabla \cdot \Vcal) - \pdiff{r}{x_k} (\nabla \Vcal_k \cdot \nabla p) - (\nabla r \cdot \nabla \Vcal_k) \pdiff{p}{x_k} ] |
d_sd_st_supg_c |
<material>, <parameter_b>, <parameter_u>, <parameter_w>, <parameter_mesh_velocity> | \sum_{K \in \Ical_h}\int_{T_K} \delta_K\ [ (\ul{b} \cdot \nabla u_k) (\ul{b} \cdot \nabla w_k) (\nabla \cdot \Vcal) - (\ul{b} \cdot \nabla \Vcal_i) \pdiff{u_k}{x_i} (\ul{b} \cdot \nabla w_k) - (\ul{u} \cdot \nabla u_k) (\ul{b} \cdot \nabla \Vcal_i) \pdiff{w_k}{x_i} ] |
d_sd_surface_integrate |
<parameter>, <parameter_mesh_velocity> | \int_{\Gamma} p \nabla \cdot \ul{\Vcal} |
d_sd_volume_dot |
<parameter_1>, <parameter_2>, <parameter_mesh_velocity> | \int_{\Omega_D} p q (\nabla \cdot \ul{\Vcal}) \mbox{ , } \int_{\Omega_D} (\ul{u} \cdot \ul{w}) (\nabla \cdot \ul{\Vcal}) |
dw_st_adj1_supg_p |
<material>, <virtual>, <state>, <parameter> | \sum_{K \in \Ical_h}\int_{T_K} \delta_K\ \nabla p (\ul{v} \cdot \nabla \ul{w}) |
dw_st_adj2_supg_p |
<material>, <virtual>, <parameter>, <state> | \sum_{K \in \Ical_h}\int_{T_K} \tau_K\ \nabla r (\ul{v} \cdot \nabla \ul{u}) |
dw_st_adj_supg_c |
<material>, <virtual>, <parameter>, <state> | \sum_{K \in \Ical_h}\int_{T_K} \delta_K\ [ ((\ul{v} \cdot \nabla) \ul{u}) ((\ul{u} \cdot \nabla) \ul{w}) + ((\ul{u} \cdot \nabla) \ul{u}) ((\ul{v} \cdot \nabla) \ul{w}) ] |
dw_st_grad_div |
<material>, <virtual>, <state> | \gamma \int_{\Omega} (\nabla\cdot\ul{u}) \cdot (\nabla\cdot\ul{v}) |
dw_st_pspg_c |
<material>, <virtual>, <parameter>, <state> | \sum_{K \in \Ical_h}\int_{T_K} \tau_K\ ((\ul{b} \cdot \nabla) \ul{u}) \cdot \nabla q |
dw_st_pspg_p |
<opt_material>, <virtual>, <state> <opt_material>, <parameter_1>, <parameter_2> |
\sum_{K \in \Ical_h}\int_{T_K} \tau_K\ \nabla p \cdot \nabla q |
dw_st_supg_c |
<material>, <virtual>, <parameter>, <state> | \sum_{K \in \Ical_h}\int_{T_K} \delta_K\ ((\ul{b} \cdot \nabla) \ul{u})\cdot ((\ul{b} \cdot \nabla) \ul{v}) |
dw_st_supg_p |
<material>, <virtual>, <parameter>, <state> | \sum_{K \in \Ical_h}\int_{T_K} \delta_K\ \nabla p\cdot ((\ul{b} \cdot \nabla) \ul{v}) |
dw_stokes |
<opt_material>, <virtual>, <state> <opt_material>, <state>, <virtual> <opt_material>, <parameter_v>, <parameter_s> |
\int_{\Omega} p\ \nabla \cdot \ul{v} \mbox{ , } \int_{\Omega} q\ \nabla \cdot \ul{u} \mbox{ or } \int_{\Omega} c\ p\ \nabla \cdot \ul{v} \mbox{ , } \int_{\Omega} c\ q\ \nabla \cdot \ul{u} |
d_sum_vals |
<parameter> | |
d_surface |
<parameter> | \int_\Gamma 1 |
dw_surface_dot |
<opt_material>, <virtual>, <state> <opt_material>, <parameter_1>, <parameter_2> |
\int_\Gamma q p \mbox{ , } \int_\Gamma \ul{v} \cdot \ul{u} \mbox{ , } \int_\Gamma \ul{v} \cdot \ul{n} p \mbox{ , } \int_\Gamma q \ul{n} \cdot \ul{u} \mbox{ , } \int_\Gamma p r \mbox{ , } \int_\Gamma \ul{u} \cdot \ul{w} \mbox{ , } \int_\Gamma \ul{w} \cdot \ul{n} p \\ \int_\Gamma c q p \mbox{ , } \int_\Gamma c \ul{v} \cdot \ul{u} \mbox{ , } \int_\Gamma c p r \mbox{ , } \int_\Gamma c \ul{u} \cdot \ul{w} \\ \int_\Gamma \ul{v} \cdot \ull{M} \cdot \ul{u} \mbox{ , } \int_\Gamma \ul{u} \cdot \ull{M} \cdot \ul{w} |
dw_surface_flux |
<opt_material>, <virtual>, <state> | \int_{\Gamma} q \ul{n} \cdot \ull{K} \cdot \nabla p |
d_surface_flux |
<material>, <parameter> | \int_{\Gamma} \ul{n} \cdot K_{ij} \nabla_j \bar{p} \mbox{vector for } K \from \Ical_h: \int_{T_K} \ul{n} \cdot K_{ij} \nabla_j \bar{p}\ / \int_{T_K} 1 \mbox{vector for } K \from \Ical_h: \int_{T_K} \ul{n} \cdot K_{ij} \nabla_j \bar{p} |
dw_surface_integrate |
<opt_material>, <virtual> | \int_{\Gamma} q \mbox{ or } \int_\Gamma c q |
ev_surface_integrate |
<opt_material>, <parameter> | \int_\Gamma y \mbox{ , } \int_\Gamma \ul{y} \mbox{ , } \int_\Gamma \ul{y} \cdot \ul{n} \\ \int_\Gamma c y \mbox{ , } \int_\Gamma c \ul{y} \mbox{ , } \int_\Gamma c \ul{y} \cdot \ul{n} \mbox{ flux } \mbox{vector for } K \from \Ical_h: \int_{T_K} y / \int_{T_K} 1 \mbox{ , } \int_{T_K} \ul{y} / \int_{T_K} 1 \mbox{ , } \int_{T_K} (\ul{y} \cdot \ul{n}) / \int_{T_K} 1 \\ \mbox{vector for } K \from \Ical_h: \int_{T_K} c y / \int_{T_K} 1 \mbox{ , } \int_{T_K} c \ul{y} / \int_{T_K} 1 \mbox{ , } \int_{T_K} (c \ul{y} \cdot \ul{n}) / \int_{T_K} 1 y|_{qp} \mbox{ , } \ul{y}|_{qp} \mbox{ , } (\ul{y} \cdot \ul{n})|_{qp} \mbox{ flux } \\ c y|_{qp} \mbox{ , } c \ul{y}|_{qp} \mbox{ , } (c \ul{y} \cdot \ul{n})|_{qp} \mbox{ flux } |
dw_surface_laplace |
<material>, <virtual>, <state> <material>, <parameter_2>, <parameter_1> |
\int_{\Gamma} c \partial_\alpha \ul{q}\,\partial_\alpha \ul{p}, \alpha = 1,\dots,N-1 |
dw_surface_lcouple |
<material>, <virtual>, <state> <material>, <state>, <virtual> <material>, <parameter_1>, <parameter_2> |
\int_{\Gamma} c q\,\partial_\alpha p, \int_{\Gamma} c \partial_\alpha p\, q, \int_{\Gamma} c \partial_\alpha r\, s,\alpha = 1,\dots,N-1 |
dw_surface_ltr |
<opt_material>, <virtual> <opt_material>, <parameter> |
\int_{\Gamma} \ul{v} \cdot \ull{\sigma} \cdot \ul{n}, \int_{\Gamma} \ul{v} \cdot \ul{n}, |
di_surface_moment |
<parameter>, <shift> | \int_{\Gamma} \ul{n} (\ul{x} - \ul{x}_0) |
dw_surface_ndot |
<material>, <virtual> <material>, <parameter> |
\int_{\Gamma} q \ul{c} \cdot \ul{n} |
dw_tl_bulk_active |
<material>, <virtual>, <state> | \int_{\Omega} S_{ij}(\ul{u}) \delta E_{ij}(\ul{u};\ul{v}) |
dw_tl_bulk_penalty |
<material>, <virtual>, <state> | \int_{\Omega} S_{ij}(\ul{u}) \delta E_{ij}(\ul{u};\ul{v}) |
dw_tl_bulk_pressure |
<virtual>, <state>, <state_p> | \int_{\Omega} S_{ij}(p) \delta E_{ij}(\ul{u};\ul{v}) |
dw_tl_diffusion |
<material_1>, <material_2>, <virtual>, <state>, <parameter> | \int_{\Omega} \ull{K}(\ul{u}^{(n-1)}) : \pdiff{q}{\ul{X}} \pdiff{p}{\ul{X}} |
dw_tl_fib_a |
<material_1>, <material_2>, <material_3>, <material_4>, <material_5>, <virtual>, <state> | \int_{\Omega} S_{ij}(\ul{u}) \delta E_{ij}(\ul{u};\ul{v}) |
dw_tl_he_mooney_rivlin |
<material>, <virtual>, <state> | \int_{\Omega} S_{ij}(\ul{u}) \delta E_{ij}(\ul{u};\ul{v}) |
dw_tl_he_neohook |
<material>, <virtual>, <state> | \int_{\Omega} S_{ij}(\ul{u}) \delta E_{ij}(\ul{u};\ul{v}) |
dw_tl_membrane |
<material_a1>, <material_a2>, <material_h0>, <virtual>, <state> | |
d_tl_surface_flux |
<material_1>, <material_2>, <parameter_1>, <parameter_2> | \int_{\Gamma} \ul{\nu} \cdot \ull{K}(\ul{u}^{(n-1)}) \pdiff{p}{\ul{X}} |
dw_tl_surface_traction |
<opt_material>, <virtual>, <state> | \int_{\Gamma} \ul{\nu} \cdot \ull{F}^{-1} \cdot \ull{\sigma} \cdot \ul{v} J |
dw_tl_volume |
<virtual>, <state> | \begin{array}{l} \int_{\Omega} q J(\ul{u}) \\ \mbox{volume mode: vector for } K \from \Ical_h: \int_{T_K} J(\ul{u}) \\ \mbox{rel\_volume mode: vector for } K \from \Ical_h: \int_{T_K} J(\ul{u}) / \int_{T_K} 1 \end{array} |
d_tl_volume_surface |
<parameter> | 1 / D \int_{\Gamma} \ul{\nu} \cdot \ull{F}^{-1} \cdot \ul{x} J |
dw_ul_bulk_penalty |
<material>, <virtual>, <state> | \int_{\Omega} \mathcal{L}\tau_{ij}(\ul{u}) e_{ij}(\delta\ul{v})/J |
dw_ul_bulk_pressure |
<virtual>, <state>, <state_p> | \int_{\Omega} \mathcal{L}\tau_{ij}(\ul{u}) e_{ij}(\delta\ul{v})/J |
dw_ul_compressible |
<material>, <virtual>, <state>, <parameter_u> | \int_{\Omega} 1\over \gamma p \, q |
dw_ul_he_mooney_rivlin |
<material>, <virtual>, <state> | \int_{\Omega} \mathcal{L}\tau_{ij}(\ul{u}) e_{ij}(\delta\ul{v})/J |
dw_ul_he_neohook |
<material>, <virtual>, <state> | \int_{\Omega} \mathcal{L}\tau_{ij}(\ul{u}) e_{ij}(\delta\ul{v})/J |
dw_ul_volume |
<virtual>, <state> | \begin{array}{l} \int_{\Omega} q J(\ul{u}) \\ \mbox{volume mode: vector for } K \from \Ical_h: \int_{T_K} J(\ul{u}) \\ \mbox{rel\_volume mode: vector for } K \from \Ical_h: \int_{T_K} J(\ul{u}) / \int_{T_K} 1 \end{array} |
dw_v_dot_grad_s |
<opt_material>, <virtual>, <state> <opt_material>, <state>, <virtual> <opt_material>, <parameter_v>, <parameter_s> |
\int_{\Omega} \ul{v} \cdot \nabla p \mbox{ , } \int_{\Omega} \ul{u} \cdot \nabla q \\ \int_{\Omega} c \ul{v} \cdot \nabla p \mbox{ , } \int_{\Omega} c \ul{u} \cdot \nabla q \\ \int_{\Omega} \ul{v} \cdot \ull{M} \cdot \nabla p \mbox{ , } \int_{\Omega} \ul{u} \cdot \ull{M} \cdot \nabla q |
d_volume |
<parameter> | \int_\Omega 1 |
dw_volume_dot |
<opt_material>, <virtual>, <state> <opt_material>, <parameter_1>, <parameter_2> |
\int_\Omega q p \mbox{ , } \int_\Omega \ul{v} \cdot \ul{u} \mbox{ , } \int_\Omega p r \mbox{ , } \int_\Omega \ul{u} \cdot \ul{w} \\ \int_\Omega c q p \mbox{ , } \int_\Omega c \ul{v} \cdot \ul{u} \mbox{ , } \int_\Omega c p r \mbox{ , } \int_\Omega c \ul{u} \cdot \ul{w} \\ \int_\Omega \ul{v} \cdot \ull{M} \cdot \ul{u} \mbox{ , } \int_\Omega \ul{u} \cdot \ull{M} \cdot \ul{w} |
dw_volume_dot_w_scalar_eth |
<ts>, <material_0>, <material_1>, <virtual>, <state> | \int_\Omega \left [\int_0^t \Gcal(t-\tau) p(\tau) \difd{\tau} \right] q |
dw_volume_dot_w_scalar_th |
<ts>, <material>, <virtual>, <state> | \int_\Omega \left [\int_0^t \Gcal(t-\tau) p(\tau) \difd{\tau} \right] q |
dw_volume_integrate |
<opt_material>, <virtual> | \int_\Omega q \mbox{ or } \int_\Omega c q |
ev_volume_integrate |
<opt_material>, <parameter> | \int_\Omega y \mbox{ , } \int_\Omega \ul{y} \\ \int_\Omega c y \mbox{ , } \int_\Omega c \ul{y} \mbox{vector for } K \from \Ical_h: \int_{T_K} y / \int_{T_K} 1 \mbox{ , } \int_{T_K} \ul{y} / \int_{T_K} 1 \\ \mbox{vector for } K \from \Ical_h: \int_{T_K} c y / \int_{T_K} 1 \mbox{ , } \int_{T_K} c \ul{y} / \int_{T_K} 1 y|_{qp} \mbox{ , } \ul{y}|_{qp} \\ c y|_{qp} \mbox{ , } c \ul{y}|_{qp} |
dw_volume_lvf |
<material>, <virtual> | \int_{\Omega} \ul{f} \cdot \ul{v} \mbox{ or } \int_{\Omega} f q |
d_volume_surface |
<parameter> | 1 / D \int_\Gamma \ul{x} \cdot \ul{n} |