sfepy.terms.terms_membrane module
Enter search terms or a module, class or function name.
Nonlinear convective term.
Definition: |
---|
\int_{\Omega} ((\ul{u} \cdot \nabla) \ul{u}) \cdot \ul{v}
Call signature: |
---|
dw_convect | (virtual, state) |
Arguments: |
|
---|
Diffusion term.
Definition: |
---|
\int_{\Omega} \nu\ \nabla \ul{v} : \nabla \ul{u} \mbox{ , } \int_{\Omega} \nu\ \nabla \ul{u} : \nabla \ul{w} \\ \int_{\Omega} \nabla \ul{v} : \nabla \ul{u} \mbox{ , } \int_{\Omega} \nabla \ul{u} : \nabla \ul{w}
Call signature: |
---|
dw_div_grad | (opt_material, virtual, state) |
(opt_material, parameter_1, parameter_2) |
Arguments 1: |
|
---|---|
Arguments 2: |
|
Weighted divergence term of a test function.
Definition: |
---|
\int_{\Omega} \nabla \cdot \ul{v} \mbox { or } \int_{\Omega} c \nabla \cdot \ul{v}
Call signature: |
---|
dw_div | (opt_material, virtual) |
Arguments: |
|
---|
Evaluate divergence of a vector field.
Supports ‘eval’, ‘el_avg’ and ‘qp’ evaluation modes.
Definition: |
---|
\int_{\Omega} \nabla \cdot \ul{u}
\mbox{vector for } K \from \Ical_h: \int_{T_K} \nabla \cdot \ul{u} / \int_{T_K} 1
(\nabla \cdot \ul{u})|_{qp}
Call signature: |
---|
ev_div | (parameter) |
Arguments: |
|
---|
Grad-div stabilization term ( \gamma is a global stabilization parameter).
Definition: |
---|
\gamma \int_{\Omega} (\nabla\cdot\ul{u}) \cdot (\nabla\cdot\ul{v})
Call signature: |
---|
dw_st_grad_div | (material, virtual, state) |
Arguments: |
|
---|
Evaluate gradient of a scalar or vector field.
Supports ‘eval’, ‘el_avg’ and ‘qp’ evaluation modes.
Definition: |
---|
\int_{\Omega} \nabla p \mbox{ or } \int_{\Omega} \nabla \ul{w}
\mbox{vector for } K \from \Ical_h: \int_{T_K} \nabla p / \int_{T_K} 1 \mbox{ or } \int_{T_K} \nabla \ul{w} / \int_{T_K} 1
(\nabla p)|_{qp} \mbox{ or } \nabla \ul{w}|_{qp}
Call signature: |
---|
ev_grad | (parameter) |
Arguments: |
|
---|
Linearized convective term.
Definition: |
---|
\int_{\Omega} ((\ul{b} \cdot \nabla) \ul{u}) \cdot \ul{v}
((\ul{b} \cdot \nabla) \ul{u})|_{qp}
Call signature: |
---|
dw_lin_convect | (virtual, parameter, state) |
Arguments: |
|
---|
PSPG stabilization term, convective part ( \tau is a local stabilization parameter).
Definition: |
---|
\sum_{K \in \Ical_h}\int_{T_K} \tau_K\ ((\ul{b} \cdot \nabla) \ul{u}) \cdot \nabla q
Call signature: |
---|
dw_st_pspg_c | (material, virtual, parameter, state) |
Arguments: |
|
---|
PSPG stabilization term, pressure part ( \tau is a local stabilization parameter), alias to Laplace term dw_laplace.
Definition: |
---|
\sum_{K \in \Ical_h}\int_{T_K} \tau_K\ \nabla p \cdot \nabla q
Call signature: |
---|
dw_st_pspg_p | (opt_material, virtual, state) |
(opt_material, parameter_1, parameter_2) |
Arguments: |
|
---|
SUPG stabilization term, convective part ( \delta is a local stabilization parameter).
Definition: |
---|
\sum_{K \in \Ical_h}\int_{T_K} \delta_K\ ((\ul{b} \cdot \nabla) \ul{u})\cdot ((\ul{b} \cdot \nabla) \ul{v})
Call signature: |
---|
dw_st_supg_c | (material, virtual, parameter, state) |
Arguments: |
|
---|
SUPG stabilization term, pressure part ( \delta is a local stabilization parameter).
Definition: |
---|
\sum_{K \in \Ical_h}\int_{T_K} \delta_K\ \nabla p\cdot ((\ul{b} \cdot \nabla) \ul{v})
Call signature: |
---|
dw_st_supg_p | (material, virtual, parameter, state) |
Arguments: |
|
---|
Stokes problem coupling term. Corresponds to weak forms of gradient and divergence terms. Can be evaluated.
Definition: |
---|
\int_{\Omega} p\ \nabla \cdot \ul{v} \mbox{ , } \int_{\Omega} q\ \nabla \cdot \ul{u} \mbox{ or } \int_{\Omega} c\ p\ \nabla \cdot \ul{v} \mbox{ , } \int_{\Omega} c\ q\ \nabla \cdot \ul{u}
Call signature: |
---|
dw_stokes | (opt_material, virtual, state) |
(opt_material, state, virtual) | |
(opt_material, parameter_v, parameter_s) |
Arguments 1: |
|
---|---|
Arguments 2: |
|
Arguments 3: |
|