SHOGUN  v3.2.0
 全部  命名空间 文件 函数 变量 类型定义 枚举 枚举值 友元 宏定义 
MulticlassMachine.h
浏览该文件的文档.
1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License as published by
4  * the Free Software Foundation; either version 3 of the License, or
5  * (at your option) any later version.
6  *
7  * Written (W) 1999-2011 Soeren Sonnenburg
8  * Written (W) 2012 Fernando José Iglesias García and Sergey Lisitsyn
9  * Written (W) 2013 Shell Hu and Heiko Strathmann
10  * Copyright (C) 2012 Sergey Lisitsyn, Fernando José Iglesias Garcia
11  */
12 
13 #ifndef _MULTICLASSMACHINE_H___
14 #define _MULTICLASSMACHINE_H___
15 
21 
22 namespace shogun
23 {
24 
25 class CFeatures;
26 class CLabels;
27 
30 {
31  public:
34 
40  CMulticlassMachine(CMulticlassStrategy* strategy, CMachine* machine, CLabels* labels);
41 
43  virtual ~CMulticlassMachine();
44 
49  virtual void set_labels(CLabels* lab);
50 
57  inline bool set_machine(int32_t num, CMachine* machine)
58  {
59  ASSERT(num<m_machines->get_num_elements() && num>=0)
60  if (machine != NULL && !is_acceptable_machine(machine))
61  SG_ERROR("Machine %s is not acceptable by %s", machine->get_name(), this->get_name())
62 
63  m_machines->set_element(machine, num);
64  return true;
65  }
66 
72  inline CMachine* get_machine(int32_t num) const
73  {
74  return (CMachine*) m_machines->get_element_safe(num);
75  }
76 
81  virtual CBinaryLabels* get_submachine_outputs(int32_t i);
82 
88  virtual float64_t get_submachine_output(int32_t i, int32_t num);
89 
94  virtual CMulticlassLabels* apply_multiclass(CFeatures* data=NULL);
95 
100  virtual CMulticlassMultipleOutputLabels* apply_multiclass_multiple_output(CFeatures* data=NULL, int32_t n_outputs=5);
101 
106  virtual float64_t apply_one(int32_t vec_idx);
107 
113  {
115  return m_multiclass_strategy;
116  }
117 
123  {
125  }
126 
131  inline void set_rejection_strategy(CRejectionStrategy* rejection_strategy)
132  {
133  m_multiclass_strategy->set_rejection_strategy(rejection_strategy);
134  }
135 
137  virtual const char* get_name() const
138  {
139  return "MulticlassMachine";
140  }
141 
144  {
146  }
147 
151  inline void set_prob_heuris(EProbHeuristicType prob_heuris)
152  {
154  }
155 
156  protected:
158  void init_strategy();
159 
161  void clear_machines();
162 
164  virtual bool train_machine(CFeatures* data = NULL);
165 
167  virtual bool init_machine_for_train(CFeatures* data) = 0;
168 
170  virtual bool init_machines_for_apply(CFeatures* data) = 0;
171 
173  virtual bool is_ready() = 0;
174 
176  virtual CMachine* get_machine_from_trained(CMachine* machine) = 0;
177 
179  virtual int32_t get_num_rhs_vectors() = 0;
180 
185  virtual void add_machine_subset(SGVector<index_t> subset) = 0;
186 
188  virtual void remove_machine_subset() = 0;
189 
191  virtual bool is_acceptable_machine(CMachine *machine)
192  {
193  return true;
194  }
195 
196  private:
197 
199  void register_parameters();
200 
201  protected:
204 
207 };
208 }
209 #endif
CMachine * get_machine(int32_t num) const
The class Labels models labels, i.e. class assignments of objects.
Definition: Labels.h:35
virtual CMulticlassLabels * apply_multiclass(CFeatures *data=NULL)
virtual bool is_acceptable_machine(CMachine *machine)
Multiclass Labels for multi-class classification with multiple labels.
#define SG_ERROR(...)
Definition: SGIO.h:131
CRejectionStrategy * get_rejection_strategy() const
virtual CMachine * get_machine_from_trained(CMachine *machine)=0
virtual void add_machine_subset(SGVector< index_t > subset)=0
virtual const char * get_name() const
Definition: Machine.h:300
CRejectionStrategy * get_rejection_strategy()
virtual float64_t get_submachine_output(int32_t i, int32_t num)
void set_prob_heuris_type(EProbHeuristicType prob_heuris)
bool set_element(CSGObject *e, int32_t idx1, int32_t idx2=0, int32_t idx3=0)
A generic learning machine interface.
Definition: Machine.h:138
Multiclass Labels for multi-class classification.
virtual bool init_machine_for_train(CFeatures *data)=0
virtual bool is_ready()=0
#define ASSERT(x)
Definition: SGIO.h:203
CMulticlassStrategy * m_multiclass_strategy
double float64_t
Definition: common.h:48
experimental abstract generic multiclass machine class
#define SG_REF(x)
Definition: SGRefObject.h:34
CMulticlassStrategy * get_multiclass_strategy() const
virtual CBinaryLabels * get_submachine_outputs(int32_t i)
virtual CMulticlassMultipleOutputLabels * apply_multiclass_multiple_output(CFeatures *data=NULL, int32_t n_outputs=5)
virtual bool init_machines_for_apply(CFeatures *data)=0
base rejection strategy class
virtual float64_t apply_one(int32_t vec_idx)
virtual void remove_machine_subset()=0
all of classes and functions are contained in the shogun namespace
Definition: class_list.h:16
CSGObject * get_element_safe(int32_t index) const
The class Features is the base class of all feature objects.
Definition: Features.h:62
void set_rejection_strategy(CRejectionStrategy *rejection_strategy)
void set_prob_heuris(EProbHeuristicType prob_heuris)
Binary Labels for binary classification.
Definition: BinaryLabels.h:36
class MulticlassStrategy used to construct generic multiclass classifiers with ensembles of binary cl...
EProbHeuristicType get_prob_heuris()
virtual bool train_machine(CFeatures *data=NULL)
virtual const char * get_name() const
virtual int32_t get_num_rhs_vectors()=0
void set_rejection_strategy(CRejectionStrategy *rejection_strategy)
bool set_machine(int32_t num, CMachine *machine)
virtual void set_labels(CLabels *lab)
EProbHeuristicType get_prob_heuris_type()

SHOGUN Machine Learning Toolbox - Documentation